Resumen:
|
Standard additions is a calibration technique devised to eliminate rotational matrix effects in analytical measurement. Although the technique is presented in almost every textbook of analytical chemistry, its behaviour in practice is not well documented and is prone to attract misleading accounts. The most important limitation is that the method cannot deal with translational matrix effects, which need to be handled separately. In addition, because the method involves extrapolation from known data, the method is often regarded as less precise than external calibration (interpolation) techniques. Here, using a generalised model of an analytical system, we look at the behaviour of the method of standard additions under a range of conditions, and find that, if executed optimally, there is no noteworthy loss of precision.
|