Resumen:
|
The extensive development of surface and subsurface drainage systems to facilitate agricultural production throughout North America has significantly altered the hydrology of landscapes compared to historical conditions. Drainage has transformed nutrient and hydrologic dynamics, structure, function, quantity, and configuration of stream and wetland ecosystems. In many agricultural regions, more than 80% of some catchment basins may be drained by surface ditches and subsurface drain pipes (tiles). Natural channels have been straightened and deepened for surface drainage ditches with significant effects on channel morphology, instream habitats for aquatic organisms, floodplain and riparian connectivity, sediment dynamics, and nutrient cycling. The connection of formerly isolated wetland basins to extensive networks of surface drainage and the construction of main channel ditches through millions of acres of formerly low-lying marsh or wet prairie, where no defined channel may have previously existed, have resulted in large-scale conversion of aquatic habitat types, from wetland mosaics to linear systems. Reduced surface storage, increased conveyance, and increased effective drainage area have altered the dynamics of and generally increased flows in larger streams and rivers. Cumulatively, these changes in hydrology, geomorphology, nutrient cycling, and sediment dynamics have had profound implications for aquatic ecosystems and biodiversity.
|