Resumen:
|
Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3–10 min), pressure (10–35 bar) and acid concentration (0–1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min.
|