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Introduction

The NAMAS Accreditation Standard, M10, requires accredited laboratories to
produce estimates of uncertainty of its measurements for all calibrations using
accepted methods of analysis. This requirement may be met by following the
procedures described in this publication which supersedes NIS 3003 Edition 8:
1995 and is intended for application to all fields of measurement.

The requirements for estimation of measurement uncertainty apply to all results
provided by calibration laboratories. They also apply to results produced by
testing laboratories under the following circumstances:

(a) Where it is required by the client.
(b) Where it is required by the specification to which the test is carried out.

(c) Where the uncertainty is relevant to the application or validity of the result;
. egwhere the uncertainty affects compliance to a specification or stated limit.

It is also a requirement that any laboratory, testing or calibration, which carries
out internal calibrations in support of its accredited activities produces estimates
of uncertainty for those internal calibrations. Further details can be found in
Section 3 of the M10 Supplement, Measurement and Calibration Systems.

The need for an internationally accepted procedure for expressing measurement
uncertainty led, in 1981, to the international authority in metrology, the Comité
International des Poids et Mesures (CIPM), approving brief outline recommenda-
tions [1] submitted by a working group of representatives from the major
national standards laboratories. The International Organisation for
Standardisation (ISO) was then given the task of developing a detailed guide
applicable to all levels of accuracy from fundamental research to shop floor
operations. The responsibility for the preparation of such a comprehensive
document for this broad spectrum of measurements was assigned to a working
group of the ISO Technical Advisory Group on Metrology (ISO/TAG4/WG3) and
led to publication of the ISO Guide to the Expression of Uncertainty in
Measurement [2] (hereafter referred to as the Guide) in 1993. The Guide is now
available as a BSI publication.

The uncertainty calculations given in this publication are consistent with the
recommendations made in the Guide and with the European Accreditation of
Laboratories (EAL) document R2 [3]. There are some areas where EAL R2 uses
different terminology to that of the Guide. For example, EAL R2 uses the term
"standard uncertainty of the output estimate" in place of "combined standard
uncertainty" which is used in the Guide. Where such differences occur, this
edition of M 3003 has been kept consistent with the Guide (see, however, the
Note to Section 10). At the same time other changes have been made in this
edition, as follows:

(a) To correct transcription errors that occurred in Edition 8 of NIS 3003.
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(b) Toimprove the presentation and to broaden the document to include aspects
of testing activities.

(c) Some of the uncertainty examples in Appendix H have been updated as a
result of welcomed comments from the users of the document.

(d) Sections describing Best Measurement Capability and the use of calculators
or spreadsheets have been added.

(e) The situation where uncertainty has to be expressed for a range of values
has been addressed.

Appendices D, E, F and G in this publication provide details of common sources
of error and uncertainty for a number of different fields of calibration and
Appendix H provides examples of the application of M 3003 to the expression of
uncertainty in these fields, Appendix I addresses the situation where an
expression of uncertainty is required for a range of values; Appendix J deals
with reporting "compliance with specification". An overview of the expression of
uncertainties for testing activities is given in Appendix K. The use of calculators
and spreadsheets for calculation of uncertainty is discussed in Appendix L.

As far as possible the terms and symbols used in this publication have been
aligned with the Guide. A full list of symbols and their definitions is given in
Section 10. Definitions of some of the general metrological terms are given in the
Guide.

Overview

It has long been recognised that most measurements in calibration and testing
work are subject to errors which are not perfectly quantifiable and that,
therefore, there is uncertainty associated with the results of such measurements.
A measurement result is therefore incomplete without a statement of the
corresponding measurement uncertainty.

This section of M 3003 briefly examines methods of combining and expressing
uncertainties and gives an overview of the approach taken herein, in the Guide
[2] and in its derivatives such as EAL-R2 [3]. The detail of the methodology
involved is presented in Sections 2 to 8 and Appendices B and C of this
document.

It should be stated at this point that there is no fundamentally correct way of
combining uncertainties. The Guide describes the accepted methods used by
most laboratories and required by most accreditation bodies, but it should be
remembered that it is a guide - a set of conventions, designed to produce a
reasonably quantifiable uncertainty statement, mainly based on statistical
techniques. We are trying to express the concept of impreciseness as consistently
as possible!
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By using a predetermined set of conventions, such as is presented in the Guide,
accreditation bodies, laboratories and their clients are able to compare results
from different sources in a meaningful manner. This approach also means that
uncertainties, passed down from National Standards to the end user (often
through a chain of several laboratories), are treated in a consistent and
meaningful manner at each step of this process.

An easy and obvious way of combining uncertainty contributions would be
simply to sum their limit values and quote the total as the overall uncertainty.
This has certainly been the tradition in a number of fields of measurement but
is no longer acceptable. Arithmetic summation has the advantages that it is
quick, easy and generally yields a high level of confidence. In fact, at first sight,
the use of arithmetic summation would appear to imply 100% confidence in the
extent of the uncertainty associated with the measurement result.

Arithmetic summation does, however, have disadvantages. First, it is unlikely
that, when errors from a number of different sources are combined, the sign and
magnitude of the errors are such that they will all add up to the limit value
produced by arithmetic summation. Arithmetic summation means, therefore,
that an unduly pessimistic estimate of uncertainty would often be quoted.

Secondly, every experienced metrologist knows that if a measurement is
repeated a number of times under the same conditions, a spread of values will
be obtained. Furthermore, there will occasionally be a result that is so
inconsistent with the others that the metrologist might ignore it, regarding it as
an outlier or spurious result. But how far away does this outlier have to be from
the mean value before it is ignored? This is where the experience of the
metrologist comes in - he or she will, through knowledge and experience, have
developed an almost intuitive "feel" for results that should be discounted. So,
almost without thinking about it, the metrologist might impose statistical limits
on the spread of values that are included in the overall uncertainty - and
without any quantifiable justification for the extent of these limits.

It follows that if this intuitively truncated spread of values is added in with
other sources of error, there is a small but finite possibility that the "true value"
actually lies outside the stated uncertainties - in other words, the 100%
confidence implied by arithmetic summation is not attainable. Using this
approach, a statement of the confidence with which it is assumed that the "true
value" does lie within the stated limits is not possible.

For these reasons, the Guide approaches the subject of measurement uncertainty
using statistical methods. As with all methods of addressing this subject it is not
perfect - it sometimes depends, for example, on imperfectly known probability
distributions being assumed to have particular characteristics - but it enables
reasonable values to be assigned to the overall uncertainty, complete with
information regarding the confidence probability with which the uncertainty
statement is associated.
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It is now apparent that the subject of measurement uncertainty is complex. The
Guide takes a logical approach to the subject and it is worth, at this point,
summarising this approach:

(a)

(b)

(c©

(d)

(e)

There is an input quantity to the measurement process, for example the
imported calibration uncertainty, effects of ambient temperature or the
repeatability of the process. This input quantity is represented by the
symbol x. There will usually be more than one input quantity so the ith
quantity can be represented by the symbol ;.

The standard uncertainty associated with the ith input quantity is
represented by u(x,). The standard uncertainty is defined as one standard
deviation and is derived from the uncertainty of the input quantity by
dividing by a number associated with the assumed probability distribution.
The divisors for the distributions most likely to be encountered are as
follows:

Normal 1
Normal (£ =2) 2
Rectangular V3
Triangular V6
U-shaped V2

There is an output quantity for the measurement process - the estimated
value of the measurand - and this is given the symbol y.

In some cases the input quantity to the process may not be in the same
units as the output quantity. For example, one contribution to a
measurement of, say, a gauge block or a Weston cell, may be the effect of
temperature. In these cases the input quantity is temperature, but the
output quantity is dimensional or electrical. It is therefore necessary to
introduce a sensitivity coefficient so that the output quantity (y), can be
related to the input quantity (x,). This sensitivity coefficient is referred to as
c;. The sensitivity coefficient is effectively a conversion factor from one unit
to another.

The relationship between the input quantity and the output quantity may
not be linear. The partial derivative dffox; can be used to obtain the
sensitivity coefficient and this is one of the reasons that mathematical
modelling is used to describe measurement systems. In practice the
derivation of the partial derivatives can be difficult and the effort involved
is not always justified by the results obtained. A linear approximation such
as the quotient Af/Ax;, where Af is the change in f resulting from a change
Ax; in x,, is often sufficient.

NOTE

See paragraph 2.12 for further definitions of f, x and y.
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(f) Once the output quantities associated with each input quantity x; have been
obtained in the form of a standard uncertainty (one standard deviation) they
are combined by taking the square root of the sum of the squares. This
yields the combined standard uncertainty u (y).

(g) The combined standard uncertainty, u (y), is also in the form of one standard
deviation. This does not give sufficient confidence, for most purposes, that
the "true value" lies within the stated limits. For this reason u(y) is then
multiplied by a coverage factor, %, to provide an expanded uncertainty, U.
For most purposes a value of 2 is used for %, yielding a confidence level of
approximately 95%.

(h) The result of the measurement is then reported, normally in the form y + U.
This statement is not complete without mention of the coverage factor used
to obtain the expanded uncertainty. An indication of the confidence level
obtained should also be included. Appropriate statements are described later
in this document.

There are some exceptions to the general approach for the method of combining
uncertainties described above. These are dealt with later in the document but
can be summarised as follows:

(a) Where there are unreliable input quantities - for example, poor
repeatability.

(b) Where there is a dominant systematic uncertainty contribution.
(c) Where there is correlation between two or more of the input quantities.

(d) Where the uncertainties are not bilateral, ie the positive uncertainty limit
differs from the negative one.

Concepts

An expression of the result of a measurement is incomplete unless it includes
a statement of the associated uncertainty. The uncertainty of a measurement
result is a parameter that characterises the spread of the values that could
reasonably be attributed to the measurand. It states the range of values within
which the value of the measurand is estimated to lie within a stated level of
confidence.

It is essential to distinguish the term ‘error’ (in a measurement result) from the
term ‘uncertainty’. Error is the measurement result minus the ¢rue value of the
measurand. Whenever possible a correction equal and of opposite sign to an
error is applied to the result. Because true values are never known exactly (else
there is no need to make a measurement), corrections are always approximate
and a residual error remains. The uncertainty in this residual error will
contribute to the uncertainty of the reported result.
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Given the meaning of ‘error’ it follows that uncertainty can also be defined as
the range about zero in which the error is thought to lie. It can be characterised
in terms of the spread of the probability distribution for the error. This error
distribution may be derived from the observed random variation in results, from
theoretical knowledge of the error mechanism, or in some other way. The CIPM
recommends a standard deviation as a measure of the spread of the distribution
(one ‘standard deviation’), but this is not sufficient in most fields of
measurement where a confidence interval needs to be defined. It can be said
that the true value of the measurand (or the error) lies within the stated range
with a certain level of confidence (eg 95% or 99%).

The basis for the treatment of uncertainty in this publication is the assumption
that all uncertainty components can be treated in the same way irrespective of
the nature of their associated errors. In particular, it is assumed that their
associated error distributions can be combined using ordinary statistical
procedures, whether they are fixed during a measurement process (systematic
error) or vary randomly (random error).

Sometimes a normal (ie Gaussian) distribution will adequately describe an error.
At other times, when information is lacking, it may be appropriate to model it
with a rectangular distribution, assigning equal probabilities to values between
extreme limits. It must be noted that there will sometimes be circumstances
when this assumption would give rise to optimistically small uncertainty
estimates, eg, when the distribution is ‘U-shaped; Appendix D9 gives an
example. It may be pessimistic, such as when the distribution is trapezoidal. In
cases of doubt the rectangular distribution can be assumed; this assumption
should, however, always be recorded. Further information on the treatment of
various distributions is given in the Guide. When a number of distributions of
whatever form are combined it can be shown that, apart from in one exceptional
case, the resulting probability distribution tends to the normal form in
accordance with the Central Limit Theorem [6]. The importance of this is that
it makes it possible to assign at least a minimum level of confidence in terms of
probability to the total uncertainty. The exceptional case arises when one
contribution to the total uncertainty dominates; in this circumstance the
resulting distribution departs little from that of the dominant contribution.

Faced with the task of identifying and evaluating uncertainties in any specific
measurement process it is convenient to classify them in terms of their effect on
that process. When a measurement is repeated a number of times under
substantially the same conditions, then, provided the measurement process has
sufficient sensitivity to resolve small differences, the results will not all be the
same due to the cumulative effect of small independent random variables. It is
because of the observable random effects that this indeterminacy is referred to
as the random component of uncertainty.

Corrections for errors in a measurement process may have to be made to ensure
the traceability of the mean value of a sample of results to the national
standard. The residual errors in these corrections are systematic in their effect
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on the measurement process at the time of its use, and therefore the
corresponding uncertainty components are sometimes classified as systematic
by association.

In mentioning the traditional classification of describing components of
uncertainty as ‘random’ or ‘systematic’, it has to be appreciated that this is only
meant to apply to the specific measurement process under consideration. In a
hierarchical national measurement system, as uncertainties are propagated
down through the calibration laboratories in the system, the classification of an
influence quantity as a random component of uncertainty at one echelon will
change to being a systematic component of uncertainty at the next lower level.
For example, a calibration laboratory undertaking a calibration of a reference
standard for another laboratory in a lower echelon will report a single value of
total measurement uncertainty that combines the calibration laboratory’s
random and systematic components of uncertainty for the measurand. When the
lower echelon laboratory uses the calibrated standard, the total uncertainty of
its value will then be a systematic component in its effect within the uncertainty
budget of that laboratory’s further measurements.

Because the nature of the effect of an uncertainty component can change the
CIPM has advocated the grouping of uncertainty components according to the
method used to estimate their numerical values:

Type A: those that are evaluated by statistical methods.
Type B: those that are evaluated by other means.

In paragraph 3.3.4 of the Guide it is said that the purpose of the Type A and
Type B classification is to indicate the two different ways of evaluating
uncertainty components, and is for convenience in discussion only. Whether
components of uncertainty are classified as ‘random’ or ‘systematic’ in relation
to a specific measurement process, or described as ‘Type A’ or ‘Type B’ depending
on the method of evaluation, all components regardless of classification are
modelled by probability distributions quantified by variances or standard
deviations. Therefore any convention as to how they are classified does not affect
the estimation of total uncertainty. But it should always be remembered that,
in the present publication, when the terms ‘random’ and ‘systematic’ are used
they refer to the effects of uncertainty on a specific measurement process. It is
the usual case that random components require Type A evaluations and
systematic components require Type B evaluations, but there are some
exceptions.

In general a measurement process can be regarded as having estimated input
quantities, given the symbol x, which contribute to the estimated value of the
measurand or output quantity, given the symbol y. Where, as in most cases,
there are several input quantities these are represented by x; and the standard
uncertainty associated with the estimated value of each input quantity is
represented by u(x,). Standard uncertainty and its evaluation are discussed in
Sections 3 and 4.
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3.2

3.3

The measurement process can usually be modelled by a functional relationship
between the estimated input quantities and the output estimate in the form

y =[x, %gyennn. , XN (D)

For example, if electrical resistance R is measured in terms of voltage V and
current I then the relationship is R = fiV,I) = V/I. The mathematical model of
the measurement process is used to identify the input quantities that need to
be considered in the uncertainty budget and their relationship to the total
uncertainty for the measurement. In some cases the input quantities are not in
the same units as the output quantity, as in the above example, and each input
uncertainty will need to be multiplied by an appropriate factor (see section 5)
before it is combined with the other uncertainties.

Type A evaluation of standard uncertainty

A Type A evaluation will normally be used to obtain a value for the repeatability
or randomness of a measurement process exhibited on one particular occasion.
For some measurements, the random component of uncertainty may not be
significant in relation to other contributions to uncertainty. It is nevertheless
desirable for any measurement process that the relative importance of random
effects be established. When there is a significant spread in a sample of
measurement results, the arithmetic mean or average of the results should be
calculated. If there are n independent repeated values for a quantity g then the

mean value ¢ is given by

..... Y @)

-_ 1
q = —
n ;

The spread in the results, ie the range, indicates the merit or repeatability of
the measurement process and depends on the apparatus used, the method, and
sometimes on the person making the measurement. A useful statistic is the
standard deviation ¢ of the n values that comprise the sample, which is given
by

= /jl Y (g;-q) 3)

n ;-

If further measurements are made, using the same experimental conditions as
specified in para 3.2, then, for each sample of results considered, different values
for the arithmetic mean and standard deviation will be obtained. For large
values of n, these mean values approach a central limit value of a distribution
of all possible values. This probability density distribution can often be assumed
to have the normal form. In practice the measurement process may have
limitations in response for large deviations from the mean value and this will
cause the actual form of the distribution curve to be truncated to some extent.
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From the results of a single sample of measurements, an estimate, s(g;), can be
made of the standard deviation ¢ of the whole population of possible values of
the measurand from the relation

N T T Y- @
s(g)) sz(qj qr .

Jj=1

It will be noted that this result differs from the standard deviation of the sample
itself by the factor 1/(n-1) in place of 1/n under the square root sign, the
difference becoming smaller as the number of measurements n is increased.

The estimated standard deviation of the uncorrected mean value of the
measurand is given by

s = 2%

: (5)

n

It may not always be practical to repeat the measurement many times during
a calibration. In these cases a more reliable estimate of the standard deviation
of a measurement system can be obtained from an earlier Type A evaluation,
based on a larger number of readings. If a prior assessment of s(g;) is used then
the value of n used in equation (5) to calculate the standard deviation of the
mean is the number of repeat readings made for the calibration itself and not
that used in equation (4) to obtain the estimated standard deviation.

Whenever possible at least two measurements should be made as part of the
calibration procedure; however, it is acceptable for a single measurement to be
made when it is known that the random contributions in the measurement,
including those for the device being calibrated, are negligible. For some
calibrations it may be desirable to make only one measurement on the device
being calibrated, even though it is known to have imperfect repeatability, and
to rely on a previous assessment of the repeatability of like devices. This
procedure must be treated with caution because the reliability of a previous
assessment will depend on the number of devices sampled and how well this
sample represents all devices. It is also recommended that data obtained from
prior assessment should be regularly reviewed. Of course, when only one
measurement is made on the device being calibrated a value of s(g;) must have
been obtained from prior measurements, if only to establish that its effect can
be ignored, and n in equation (5) is then 1.

NOTE: The degrees of freedom under these circumstances are related to the number of
measurements used for the previous assessment and not to that for the calibration itself. Degrees
of freedom are discussed in Appendix B.

A previous estimate of standard deviation can only be used if there has been no
subsequent change in the measurement system or procedure that could have an
effect on the repeatability. If an apparently excessive spread in measurement
values is found the cause should be investigated before proceeding further.
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3.8

3.9

3.10

4.1

Although no correction can be made for a random component of uncertainty,
equation (5) shows the benefit of increasing the number of measurements even
when using a previous good estimate for the standard deviation of the whole
population of possible values. However, the benefit becomes progressively less
as the number is increased, and it is usually not necessary to make more than
about 10 measurements and often 4 measurements are sufficient, provided the
guidelines mentioned in paragraph 7.3 for the required level of confidence are
followed.

The above statistical analysis of measurement values is a Type A evaluation for
a random component of uncertainty. However, a random effect can produce a
fluctuation in an instrument’s indication, which is both noise-like in character
and significant in terms of uncertainty. It may then only be possible to estimate
limits to the range of indicated values. This is not a common situation but when
it occurs a Type B evaluation of the uncertainty component will be required.
This is done as described in paragraph 4.5 for the case of a Type B uncertainty
when only upper and lower bounds can be assessed.

The term standard uncertainty, u(x), is used for the uncertainty of the result of
a measurement expressed as a standard deviation. As mentioned in 2.11, there
will usually be more than one input quantity so any individual contribution is
identified by a subscript or a unique symbol. Thus the standard uncertainty,
u(x,), of an input quantity, x,, evaluated by means of repeated measurements is
obtained from

u(xl) = S(q_), (6)

where s(g) is calculated in accordance with equation (5).

Type B evaluation of standard uncertainty

It is probable that systematic components of uncertainty, ie those that account
for errors that remain constant while the measurement is made, will be obtained
from Type B evaluations: the most important of these systematic components,
for an instrument, will often be the uncertainties associated with the corrections
to indicated values on a calibration certificate issued by a calibration laboratory
in a higher echelon in the national calibration system. However, there can be,
and usually are, other important contributions to systematic errors in
measurement that arise in the instrument user’s own laboratory. The successful
identification and evaluation of these contributions depends on a detailed
knowledge of the measurement process and the experience of the person making
the measurements. The need for the utmost vigilance in preventing mistakes
cannot be overemphasised. Common examples are errors in the corrections
applied to values, transcription errors, and faults in software designed to control
or report on a measurement process. The effects of such mistakes cannot readily
be included in the evaluation of uncertainty.
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In evaluating the components of uncertainty it is necessary to consider and
include at least the following possible sources:

(a) the reported uncertainty for the reference standard and any drift or
instability in its value or reading;

(b) the calibration or measuring equipment, including ancillaries such as
connecting leads etc., and any drift or instability in values or readings;

(c) the equipment being calibrated or measured, for example its resolution and
any instability during calibration;

(d) the operational procedure;
(e) the effects of environmental conditions on any or all of the above.

More detailed guidance concerning sources of error and uncertainty is given in
Appendices D, E, F and G for electrical calibrations, mass calibrations,
temperature calibrations and dimensional calibrations, respectively.

Whenever possible, corrections should be made for errors revealed by calibration
or other sources; the convention is that an error is given a positive sign if the
measured value is greater than the conventional true value. The correction for
error involves subtracting the error from the measured value. On occasion, to
simplify the measurement process it may be preferable to treat such an error,
when it is small compared with other uncertainties, as if it were a systematic
uncertainty equal to (+) the uncorrected error magnitude.

Having identified all the possible systematic components of uncertainty based
as far as possible on experimental data or on theoretical grounds, they should
be characterised in terms of standard deviations based on the assessed
probability distributions. The probability distribution of an uncertainty obtained
from a Type B evaluation can take a variety of forms but it is generally
acceptable to assign well defined geometric shapes for which the standard
deviation can be obtained from a simple calculation. The distributions discussed
below wiil be applicable in the majority of cases.

When it is possible to assess only the upper and lower bounds of an error a
rectangular probability distribution should be assumed for the uncertainty
associated with this error, (See, however, Section 2.5.). Then, if a, is the semi-
range of variation the standard deviation, again referred to as the standard
uncertainty, wu(x,), is given by
ulx) = & (7
V3

The Guide gives some information on the derivation of this expression.
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4.6

4.7

4.8

An uncertainty obtained from a calibration certificate where the level of
confidence or a coverage factor (k) has been reported may, unless otherwise
indicated, be treated as having a normal probability distribution and the
standard uncertainty will be given by

expanded uncertainty (8)
z .

u(x) =

See paragraph 7.2 for a definition of expanded uncertainty. For example a
calibration certificate issued by an accredited laboratory for an instrument will
normally report an expanded uncertainty based on 2 = 2 and include a
statement that relates this to a confidence level of approximately 95% (see
Section 8.1). However, if only a level of confidence is given, for example
"confidence probability not less than 95%", then a normal distribution can be
assumed with a coverage factor 2 = 2. The following relationships apply, in the
case of a normal distribution, to other levels of confidence:

k = 2.58 for 99% confidence
k = 3 for 99.7% confidence

If a value of %k greater than 2 is given but the level of confidence is quoted as
95% (see Appendix B for details of when this will occur) then the value given for
% must be used in equation (8). In this situation the effective degrees of freedom
v, will also need to be considered. This is also addressed in Appendix B.

When an instrument has been certified as conforming to specification then the
uncertainty in the calibration should have been taken into account. Since it is
not the normal practice of most instrument manufacturers to declare confidence
levels for tolerances, rectangular probability distributions can be assumed (see,
however, paragraph 2.5), ie

ulx) = Tolerance limit

V3

Note: If tolerance limits had, for example, been quoted with a level of confidence
corresponding to 3 standard deviations of the manufacturer’s production
probability distribution then one would have taken the instrument’s uncertainty
contribution as

_ Tolerance limit
ulx;) =

3

In some cases an uncertainty may already be expressed as a standard
uncertainty, eg when it is derived from a calibration performed on one of the
component parts of a measurement system. Clearly, in this case, no further
calculation is required.
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Combined standard uncertainty

Once the standard uncertainties u(x;) of the input quantities x; have been
derived from both Type A and Type B evaluations, the standard uncertainty of
the output quantity y = flx,, x,, ...... ,%Xy), can be calculated as follows

N N
uy) = |Yclulx) = Y uly), )]
i=1 i=1

where c¢; , a sensitivity coefficient, is the partial derivative dffdx; , or in some
cases a known coefficient, such as the temperature coefficient of expansion and
u,(y) = |c;|u(x;). An example of the combined standard uncertainty is as follows

2 2 2 2
U Ca @y + CyQy

= |i61Y1e
u(y) J[k] 3

+ c42u2(x4) ’

where the error associated with U, has a normal probability distribution, a, and
a, are limits with rectangular probability distributions, all obtained from Type B
evaluation, and u(x,) is obtained from Type A evaluation.

The calculations required to obtain sensitivity coefficients by partial
differentiation can be a lengthy process, particularly when there are many
individual contributions and uncertainty estimates are needed for a range of
values. If the functional relationship is not known for a particular measurement
system the sensitivity coefficients can sometimes be obtained by the practical
approach of changing one of the input variables by a known amount, while
keeping all other inputs constant, and noting the change in the output quantity.
This approach can also be used if f is known, but if f is not a straightforward
function the determination of partial derivatives required is likely to be error-
prone. In this approach the partial derivative df/dx; can be replaced by the
quotient Af/Ax;, where Af is the change in f resulting from a change Ax, in x,. It
is important to choose the magnitude of the change Ax; carefully. It should be
balanced between being sufficiently large to obtain adequate numerical accuracy
(number of numerically significant figures) in Af and sufficiently small to provide
a mathematically sound approximation to the partial derivative.

If the functional relationship is an addition or subtraction of the input
quantities, for example

Wy = f (Wg D ,81, ,8C, Ab) = Wy + Dg + 3I, + 5C + Ab,

then all the input quantities will be in the same units as the output quantity
and the partial derivatives will all be unity.
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5.4

6.1

If the functional relationship is a product or quotient, ie the output quantity is
obtained from only the multiplication or division of the input quantities, this can
be transformed to a linear addition by the use of relative uncertainties, eg

expressed in % or parts per million. The general form is y = cx;”.x,™..... x

where the exponents p; are known positive or negative numbers. The standard
uncertainty will then be given by

u (')') \JE [p u(x) (10)

|| i=1 |x|

This is of the same form as equation (9) but with the standard uncertainties
expressed as relative values.

Some examples of the use of relative uncertainties are

_ - uP) _ | eV, juqe
P=fVID=VI and 5 \I[ V] [I] ,

_ =V2/R du(P)=J 2u(V)z | (u(R)y2
P =f(VR) and —2 [V] [R],

= PZ=RZ”2 d U(V)=J U(P)z U(Z)z.
V=fBZ) = (. and —< 2P] [2Z]

The use of relative uncertainties can often simplify the calculations and is
particularly helpful when the input quantities and the uncertainties are already
given in relative terms. However, sensitivity coefficients may still be required
to account for known relationships, such as a temperature coefficient. Relative
uncertainties should not be used when the functional relationship is already an
addition or subtraction.

Correlated input quantities

The expressions given for the standard uncertainty of the output estimate,
equations (9) and (10), will only apply when there is no correlation between any
of the input estimates, that is, the input quantities are independent of each
other. It may be the case that some input quantities are affected by the same
influence quantity, eg temperature, or by the errors in a particular instrument
that is used for separate measurements in the same process. In such cases the
input quantities are not independent of each other and the equation for
obtaining the standard uncertainty of the output estimate must be modified.
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The effects of correlated input quantities may serve to reduce the combined
standard uncertainty, such as when an instrument is used as a comparator
between a standard and an unknown, and this is referred to as negative
correlation. In other cases measurement errors will always combine in one
direction and this has to be accounted for by an increase in the combined
standard uncertainty. This is referred to as positive correlation. Knowledge
concerning the possibility of correlation can often be obtained from the
functional relationship between the input quantities and the output quantity but
it may also be necessary to investigate the effects of correlation by making a
planned series of measurements.

If positive correlation between input quantities is suspected but the degree of
correlation cannot easily be determined then the most straightforward solution
is to add arithmetically the standard uncertainties for these quantities to give
a new standard uncertainty that is then dealt with in the usual manner in
equation (9) or (10). The Guide should be consulted for a more detailed approach
to dealing with correlation based on the calculation of correlation coefficients.

An example of the treatment of correlated contributions is shown in paragraph
H6.4.

Expanded uncertainty and level of confidence

In most fields of measurement there is a need for some statement of confidence
that can be associated with a calculated total uncertainty. It is helpful in
making valid comparisons of measurement results and in giving proper meaning
to an uncertainty reported on a certificate in terms of probability that the
reported value of a measurand with its associated (+) uncertainty provides a
range of values that includes the true value. A further consideration is the
choice of level of confidence, also referred to as coverage probability. Although
the utmost confidence in a statement of total uncertainty for a measurement will
always seem desirable, in a hierarchical national system of laboratories
involving the propagation of uncertainties from one echelon to the next, this
level of confidence is not possible for many measurements.

The Guide recognises the need for providing a level of confidence associated with
an uncertainty and uses the term expanded uncertainty, U, which is obtained
by multiplying the combined standard uncertainty by a coverage factor, &, thus

U = kuy). (11)

UKAS, in line with EAL and generally accepted international practice,
recommends that a coverage factor of £ = 2 is used to calculate the expanded
uncertainty. This value of £ will give a level of confidence of approximately 95%
(95.45%), assuming a normal distribution. However, if the random contribution
to uncertainty is relatively large compared with other contributions and the
number of repeat readings is small there is a possibility that the probability
distribution will not be normal in form and a value of 2 = 2 will give a level of
confidence of less than 95%. In these circumstances the procedure given in
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Appendix B should be used to obtain a value for the coverage factor that
maintains the level of confidence at approximately 95%. A criterion that can be
used to determine whether or not to use the procedure in Appendix B is as
follows:

Generally, if an uncertainty assessment involves only one Type A evaluation and
the number of readings, n, is greater than 2 and the combined standard
uncertainty is more than twice the Type A uncertainty then k2 = 2 will provide
a coverage probability of approximately 95% and there is no need to use
Appendix B to obtain a different value for the coverage factor.

Further detail on the justification for this criterion is given in paragraph B7.

This may be of particular relevance to testing laboratories where it may not be
practical, or even possible, to carry out many repeat measurements. It might be
noted that it was not considered necessary to use Appendix B for any of the
calibration examples included in Appendix H.

It has been mentioned that the ideal level of confidence for all measurements
would be the utmost level of confidence, that is approaching 100% probability.
If each uncertainty contribution were based on a rectangular distribution,
arithmetic summation of their ranges would yield such a level of confidence.
However, this procedure leads to considerably increased values of total
uncertainty with very small probabilities that the true values are actually near
the range limits, when the input quantities are uncorrelated.

If a level of confidence of 95% is considered to be too low for a particular
calibration then a higher coverage factor, eg k = 3, giving a level of confidence
of approximately 99.7%, can be used.

A statement of confidence cannot in practice report a specific level of probability,
such as 95%, as this requires a knowledge of the actual probability distribution
for each quantity upon which the value of a measurand depends. Nevertheless
the ability to report an approximate level of confidence does give a very valuable
meaning to a measurement result.

In some circumstances the value of U calculated for a level of confidence of 95%
using the procedure given in this document will be greater than the total
uncertainty obtained by arithmetic summation and therefore represents an
unrealistic result. This situation could occur where there is a dominant Type B
contribution with a theoretical U-shaped or assumed rectangular probability
distribution, in which case the procedure given in Appendix C should be followed
to obtain the value of U.
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Reporting of results

After the expanded uncertainty has been calculated for a level of confidence of
95% the value of the measurand and expanded uncertainty should be reported
as y + U and accompanied by the following statement of confidence:

"The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor 2 = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements".

In cases where the procedure of Appendix B has been followed the actual value
of the coverage factor should be substituted for & = 2 and the following
statement used:

"The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor £ = XX, which for a ¢-distribution with V=YY
effective degrees of freedom corresponds to a coverage probability of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements".

The common use of the word "approximately" in this context has generated a
considerable amount of debate about its specific meaning. For the purposes of
this document "approximately” is interpreted as meaning "effectively" or "for
most practical purposes".

In the special circumstances where a dominant Type B contribution occurs refer
to Appendix C. If a two-part uncertainty is being reported, refer to Appendix I.

Uncertainties are usually expressed in bilateral terms (z) either in units of the
measurand or as relative values, for example as a percentage (%), parts per
million (ppm), 1 in 10% etc. However there may be situations where the upper
and lower uncertainty values are different; for example if cosine errors are
involved. If such differences are small then the most practical approach is to
report the expanded uncertainty as * the larger of the two. However if there is
a significant difference between the upper and lower values then they should be
evaluated and reported separately.

The number of figures in a reported uncertainty should always reflect practical
measurement capability. In view of the process for estimating uncertainties it
is seldom justified to report more than two significant figures. Uncertainties
should normally be rounded up to the appropriate number of figures but may be
rounded down when this does not significantly reduce confidence in a
measurement result.
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8.7

The numerical value of the measurement result should normally be rounded to
the least significant figure in the value of the expanded uncertainty quoted
unless there are justifiable reasons for quoting more figures. The normal rules
of rounding apply however if the rounding decreases the value of the uncertainty
by more than 5% the rounded-up value should be used. Rounding of results and
uncertainties should be carried out only at the final stages of the calculation in
order to prevent cumulative rounding errors having a significant effect.

Step by step procedure for the determination of
measurement uncertainty

The following is a guide to the use of this code of practice for the treatment of
uncertainties. The left hand column gives the general case while the right hand
column indicates how this relates to example H4 in Appendix H. Although this
example relates to a calibration activity, the process for testing activities is
unchanged.

General case Example H4: Calibration of a weight of nominal
value 10 kg of OIML Class M1

91 If possible determine the mathematical It will be assumed that the unknown weight, Wy, can
relationship between the input quantities be obtained from the following relationship:
and the output quantity:

¥ = [y, 2 LX) @ Wy = Wg + Dg + 81, + 8C + Ab.

9.2 Identify all corrections that have to be It is not normal practice to apply corrections for this
applied to the results of measurements of a | class of weight and the comparator has no measurable
quantity (measurand) for the conditions of linearity error, however, uncertainties for these
measurement. contributions have been estimated, therefore:

Drift of standard mass since last calibration: 0
Correction for air buoyancy: 0
Linearity correction 0
Effect of least significant digit resolution 0
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General case Example H4: Calibration of a weight of nominal
value 10 kg of OIML Class M1

9.3 List systematic components of uncertainty Source of uncertainty Limit (mg) Distribution
associated with corrections and uncorrected
systematic errors treated as uncertainties. W, Calibration of std. mass +30  normal (£=2)
Dy Drift of standard mass +30 rectangular
Seek prior experimental work or theory as 8C Comparator linearity + 3 rectangular
a basis for assigning uncertainties and dAb Air buoyancy +10  rectangular
probability distributions to the systematic oI, Resolution effects %10 triangular

components of uncertainty.

Then:

Calculate the standard uncertainty for

each component of uncertainty, obtained ulx) = u(W,) = 30 _ 15 mg,

from Type B evaluation, using equation (7) 2

for assumed rectangular distributions:
ux) = % @ uxy) = u®) = 39 = 17.32mg,

V3 V3

or equation (8) for assumed normal
distributions: ulxy) = w(dC) = 3 -17s mg,
V3

_ expanded uncertainty
ux) 3 ®)

u(x,) = u(Ab) = LO_ = 5.77mg,
or refer to other references if the assumed ‘/5
probability distribution is not covered in
this publication.

uxy = u@l) = 1% = 408 mg.
V6

9.4 Use prior knowledge or make trial From previous knowledge of the measurement system
measurements and calculations to it is known that there is a significant random
determine if there is going to be a random component of uncertainty.
component of uncertainty that is
significant compared with the effect of the
listed systematic components of
uncertainty.

9.5 If a random component of uncertainty is Three measurements were made of the difference
significant make repeated measurements between the unknown weight and the standard weight
to obtain the mean from equation (2): from which the mean difference was calculated:

- - 7 _ 0.015 + 0.025 + 0.020
q-= lij (2) Wy = 7 = 0.020¢.
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General case

Example H4: Calibration of a weight of nominal
value 10 kg of OIML Class M1

9.6 Either calculate the standard deviation of
the mean value from equations (4) and (5):

yo |l sg-ay @
s(q;) (n_l);l(q a7,

s(i)=ﬂ, )

n

or refer to the results of previous
repeatability measurements for a good
estimate of s(g,) based on a larger number
of readings.

A previous Type A evaluation had been made to
determine the repeatability of the comparison using
the same type of 10 kg weights. The standard
deviation was determined from 10 measurements using
the conventional bracketing technique and was
calculated, using equation (4), to be 8.7 mg.

Since the number of determinations taken when
calibrating the unknown weight was 3 this is the value
of n that is used to calculate the standard deviation of
the mean using equation (5):

sWp) _ 8.7 _ 5.0 mg

no V3

(W) =

9.7 Even when a random component of
uncertainty is not significant, where
possible always check the instrument
indication at least once to minimise
operator recording mistakes.

9.8 Derive the standard uncertainty for the
above Type A evaluation from equation (6):

u(x;) = s(q). 6)

This is then the standard uncertainty, equation (6):

ulxg) = u(W,) = s(Wp) = 5.0mg.

9.9 Calculate the combined standard
uncertainty for uncorrelated input
quantities using equation (9) if absolute
values are used:

N N
u ) = \Izci’ ullx) = \JE uly) , ©

i=l i1

where ¢, is the partial derivative dffdx; , or
a known sensitivity coefficient.

Alternatively use equation (10) if the

standard uncertainties are relative values:

uy) _ i [”l"("")]2 .. (10)
El il |x,|

where p, are known positive or negative
exponents in the functional relationship.

The units of all standard uncertainties are in terms of
those of the measurand, ie mg, and the functional
relationship between the input quantities and the
measurand is a linear summation; therefore all the
sensitivity coefficients are unity (¢, =1).
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General case Example H4: Calibration of a weight of nominal
value 10 kg of OIML Class M1
9.10 If correlation is suspected use the guidance | None of the input quantities is considered to be
in paragraph 6.3 or refer to other correlated to any significant extent; therefore equation
referenced documents. (9) can be used to calculate the combined standard
uncertainty:
uw(Wy) = {152 + 17.82% + 4,08% + 1.732 + 577> + 5.0°
= 2455 mg.
9.11 Either calculate an expanded uncertainty
from equation (11):
U=2x2455mg = 49.10mg.
U-=*Fkuly), an
or, if there is a significant random Since n > 2 and u(W,)/u(Wp) > 2 it was not considered
contribution evaluated from a small necessary to use Appendix B to determine a value for
number of readings (see section 7.3), use k,. In fact the effective degrees of freedom of u(Wy) is
Appendix B to calculate a value for 2, and greater than 5000 which gives a value for kg; = 2.00.
use this value to calculate the expanded
uncertainty.
9.12 Report the expanded uncertainty in the The measured value of the 10 kg weight is:
value of the measurand in accordance with
Section 8. 10 000.025 g +0.049 g.
The reported expanded uncertainty is based on a
standard uncertainty multiplied by a coverage factor
k = 2, providing a level of confidence of approximately
95%. The uncertainty evaluation has been carried out
in accordance with UKAS requirements.

10

10.1

Symbols

The symbols used are taken mainly from the Guide. The meanings have been
given in the text, including the appendices, where they occur, but are repeated
here for convenience of reference:

a; estimated semi-range of uncorrelated systematic component of
uncertainty, probability distributions unknown, wherei =1 ..... N.

a, a systematic component of uncertainty that so dominates other
contributions to uncertainty in magnitude that special consideration has
to be given to its presence in calculating total uncertainty.

c; sensitivity coefficient used to multiply an input quantity x; to express it

in terms of the output quantity y.
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s(g;)

s(q)

t, (Vo)

ulx,)

u )

Vefr

q;
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Functional relationship between the measurand y and the input
estimates x; on which y depends.

Partial derivative with respect to input quantity x; of the functional
relationship f between the measurand and the input quantities.

Coverage factor used to calculate expanded uncertainty U.

Coverage factor used to calculate an expanded uncertainty for a specified
level of confidence p where a normal probability distribution cannot be
assumed.

number of repeat readings or observations.

number of input estimates x; on which the measurand depends.

Probability or level of confidence expressed in percentage terms or in the
range zero to one.

The standard deviation of a population of data using all the samples in
that population.

Estimate of the standard deviation ¢ of the population of values of a

random variable g based on a limited sample of n results from that
population.

Experimental standard deviation of arithmetic mean gq.

Student ¢-factor for v, degrees of freedom corresponding to a given
probability p.

Standard uncertainty of input estimate x; .
Combined standard uncertainty of output estimate y.

Expanded uncertainty of output estimate y that provides a confidence
interval Y=y + U.

Degrees of freedom (general).
Degrees of freedom of standard uncertainty u(x;) of input estimate x;.
Effective degrees of freedom of u(y) used to obtain ¢,(v,y).

Jjth repeated observation of randomly varying quantity q.

Arithmetic mean or average of n repeated observations of randomly
varying quantity q.
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x; Estimate of input quantity X .
y Estimate of the measurand Y.

NOTE: The Guide uses the symbols g, and s(q,) where g; and s(q,) are used here. M 3003 uses the
subscript j instead of & in order to avoid any possible confusion with the coverage factor k.
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Appendix A

Best measurement capability

Al

A2

A3

A4

Best measurement capability is a term normally used to describe the
uncertainty that appears in an accredited calibration laboratory’s schedule of
accreditation and is the uncertainty for which the laboratory has been accredited
using the procedure that was the subject of assessment. The best measurement
capability shall be calculated according to the procedures given in this document
and shall normally be quoted as an expanded uncertainty using a coverage
factor of £ = 2. An accredited laboratory cannot report an uncertainty lower than
their accredited best measurement capability but may report an equal or higher
uncertainty. Since the magnitude of the uncertainty reported on a certificate of
calibration will often depend on properties of the device being calibrated any
definition of best measurement capability should not include uncertainties that
are dependent on this device. It may also be the case that an accredited
laboratory can achieve a particular uncertainty if conditions are optimum but
cannot achieve this uncertainty routinely.

In order to promote harmony between accredited laboratories and between
accreditation bodies the EAL has adopted the following definition of best
measurement capability: "the smallest uncertainty of measurement a laboratory
can achieve within its scope of accreditation, when performing more or less
routine calibrations of nearly ideal measurement standards intended to define,
realize, conserve or reproduce a unit of that quantity or one or more of its values,
or when performing more or less routine calibrations of nearly ideal measuring
instruments designed for the measurement of that quantity". In other words "best
measurement capability" is the smallest uncertainty a laboratory can achieve
when performing more or less routine calibrations on a nearly ideal device being
calibrated.

A nearly ideal device is one that is available but does not necessarily represent
the majority of devices that the laboratory may be asked to calibrate. The
properties of these devices that are considered to be nearly ideal will depend on
the field of calibration but may include an instrument with very low random
fluctuations, negligible temperature coefficient, very low voltage reflections
coefficient etc. The uncertainty budget that is intended to demonstrate the best
measurement uncertainty should still include contributions from the properties
of the device being calibrated that are considered to be nearly ideal but the
value of the uncertainty can be entered as zero or a negligible value. Where
necessary the laboratory’s schedule of accreditation will include a remark that
describes the conditions under which the best measurement capability can be
achieved. ’

By "more or less routine calibrations” it is meant that the laboratory shall be
able to achieve the stated capability in the normal work that it performs under
its accreditation and, by implication, using the procedures, equipment and
facilities that were the subject of the assessment. Where a lower uncertainty can
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be achieved by taking a large number of readings this should be considered
when arriving at the budget for the best measurement capability and would
therefore be within the "more or less routine" conditions.

It is acceptable for a laboratory to be accredited for a measurement uncertainty
that is larger than they can actually achieve, if this is requested. Under these
circumstances the uncertainty will still be described in the laboratory’s schedule
as their best measurement capability and the laboratory will not be permitted
to report a smaller uncertainty on accredited certificates. Clearly if the
principles of this document are followed when constructing the uncertainty
budget the resulting expanded uncertainty will reflect what the laboratory can
actually achieve, however, this may be lower than the uncertainty the laboratory
wishes to be accredited for and report on their certificates of calibration. A
possible solution to this dilemma is to make a greater allowance for one of the
contributions in the uncertainty budget, for example for drift or long term
instability in a reference standard.

In some cases the best measurement capability quoted in a laboratory’s Schedule
has to cover a two dimensional range of measured values, such as different
levels and frequencies, and it may not be practical to give the actual uncertainty
for all possible values of the quantity. In these cases the best measurement
capability may be given as a range of uncertainties appropriate to the upper and
lower values of the uncertainty that has been calculated for the range of the
quantity, or may be described as an expression. Guidance about the expression
of uncertainty over a range of values is presented in Appendix I.
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Appendix B

Deriving a coverage factor for unreliable input quantities

B1

B1l.1

B2

B2.1

B3

B3.1

B4

B4.1

Coverage factor

In the majority of measurement situations it will be possible to evaluate Type B
uncertainties with high reliability. Further, if the procedure followed for making
the measurements is well established and if the Type A evaluations are obtained
from a sufficient number of observations then the use of a coverage factor of
k = 2 will mean that the expanded uncertainty, U, will provide an interval with
a level of confidence close to 95%. This is because the distribution tends to
normality as the number of observations increases and k = 2 corresponds to 95%
confidence for a normal distribution.

Use of the t-distribution

However, in some cases it may not be practical to base the Type A evaluation
on a large number of readings, which could result in the level of confidence
being significantly less than 95% if a coverage factor of & = 2 is used. In these
situations the value of k, or more strictly 2, where p is the confidence probability
in percentage terms, eg 95, should be based on a t-distribution rather than a
normal distribution. This value of &, will give an expanded uncertainty, U,, that
maintains the level of confidence at approximately the required level p.

Derivation of a value from the t-distribution

In order to obtain a value for &, it is necessary to obtain an estimate of the
effective degrees of freedom, v, of the combined standard uncertainty u (y). The
Guide recommends that the Welch-Satterthwaite equation is used to calculate
a value for v,, based on the degrees of freedom, v, , of the individual standard
uncertainties u,(y); therefore

B(1)

Degrees of freedom

The degrees of freedom, v; , for contributions obtained from Type A evaluations

is n-1, viz., the number of readings used to evaluate ¢ minus 1. If a value for

the standard deviation is obtained from a previous evaluation, as mentioned in
section 3.5, then the degrees of freedom would be calculated from the number
of readings used to make this assessment rather than number of readings made
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during the calibration. However, it is recommended that when the prior
evaluation is carried out a sufficient number of readings are made in order to
ensure that v, > 30, ie £ < 2.09.

It is normally possible to take the degrees of freedom, v;, of Type B contributions
as infinite, that is, their value is known with a very high degree of certainty. If
this is done and there is only one contribution obtained from a Type A
evaluation, usually the repeatability of the process, then equation B(1) can be
simplified - see the example at B6.

However, if a Type B contribution is an expanded uncertainty based on a ¢-
distribution rather than a normal distribution, as described in this Appendix,
then this will be an example of a Type B uncertainty that does not have infinite
degrees of freedom. For this eventuality the degrees of freedom will be that
quoted on the calibration certificate, see paragraph 8.2, or it can be obtained
from the ¢-distribution table below for the appropriate value of kg .

Use of the t-distribution tables

Having obtained a value for v, the ¢-distribution table is used to find a value of
k,. The table below gives some values for k,;, ie those appropriate to a level of
confidence of 95%; values for other levels of confidence can be found in the
Guide.

Vepr

1 2 3 4 5 6 7 8 10 12 14 16

13.97 4.53 3.31 2.87 2.65 2.52 2.43 237 | 228 | 2.23 2.20 2.17

18 20 25 30 35 40 45 50 60 80 100 oo

2.15 2.13 2.11 2.09 2.07 2.06 2.06 2.05 2.04 | 2.03 2.02 2.00

B5.2

B5.3

NOTE: A coverage factor of & = 2 actually relates to a level of confidence of 95.45% for a normal
distribution. For convenience this is approximated to 95% which relates to a coverage factor of
k = 1.96. However, the difference is not generally significant since, in practice, the level of confidence
is based on conservative assumptions and approximations to the ¢rue probability distributions. The
values given in the table are for a level of confidence of 95.45%.

Normally v, will not be an integer and it will be necessary to interpolate
between the values given in the table. Linear interpolation will suffice for
v,z > 3; higher-order interpolation should be used otherwise. Alternatively, use
the next lower value.

The value of k4 obtained from the table is that required to calculate the
expanded uncertainty, U,;, from

Ugs = kg5 u,y)- B(@3)
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B6

B6.1

B7

B7.1

Example

In a measurement system a Type A evaluation, based on 4 observations, gave
a value of u/y) of 3.5 units using equations (4) and (5). There were 5 other
contributions all based on Type B evaluations for each of which infinite degrees
of freedom had been assumed. The combined standard uncertainty, « (y), had a
value of 5.7 units. Then from equation B(1)

4 4
- 5.7 =57 y3-9211.

Vet T 351 3.5¢
: +0+0+0+0+0 :
-1

The value of v, given in the above table immediately lower than 21.1 is 20
which gives a value for &, of 2.13 and this is the value that should be used to
calculate the expanded uncertainty.

Criterion for use of this Appendix

The criterion given in paragraph 7.3 to determine the need to use this Appendix
is based on the conclusion that if u (y)/s(@) > 2 and n > 2 and all the other

contributions are assumed to have infinite degrees of freedom, then v, > 30,
giving a value for k, of less than 2.09, which can be approximated by % = 2.
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Appendix C

Dominant systematic component of uncertainty

C1

Cl.1

C2

C2.1

C2.2

Dominant component

In some measurement processes there can be one component of uncertainty
derived from Type B evaluation that is dominant in magnitude compared with
the other components. When the dominant component is characterised by limits
within which there is a high probability of occurrence, a calculated expanded
uncertainty, U, using the coverage factor of 2 = 2, may be greater than the
arithmetic sum of the semi-range of all the individual limiting values. As it may
be assumed that the arithmetic sum of these contributions would be for a level
of confidence approaching 100%, there is a degree of pessimism in following the
normal recommended procedure given by equations (9) or (10) and (11).
Consequently special consideration needs to be given to the situation in which
the calculated expanded uncertainty fails to meet the criterion

U < Arithmetic sum of limit values of all contributions. C(D

Rectangular and U-shaped distributions

In most cases the criterion of equation C(1) will be met, but, for example, when
making rf and microwave electrical measurements mismatch can be a dominant
contribution. Because the probability distribution is U-shaped (see Appendix D)

the standard uncertainty is i rather than 2. fora rectangular distribution

V2 V3
of the same semi-range limit a,. The increased standard uncertainty makes it
less likely that the criterion of equation C(1) will be met. When the criterion is
not met then the dominant contribution, a,, should be extracted and a new
value of the expanded uncertainty calculated as follows

U=a,+ U C(2)

where U'is calculated from the remaining contributions using equations (9) or
(10) and (11).

This situation can occur whenever there is a dominant Type B uncertainty
where the divisor associated with the assumed probability distribution is less
than the coverage factor used to calculate U. This applies to the commonly
assumed rectangular distribution but also to others such as U-shaped or
triangular distributions.
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C3

C3.1

Derivation of confidence level

When this situation has occurred the derivation of a confidence level with
associated probability involves the convolution of probability distributions. As
it would not be appropriate to attempt to present this in this publication, a level
of confidence of 95%, based on a coverage factor of £ = 2 can only apply to

calculating a value for the term U’ in equation C(2). In these special
circumstances, the statement of confidence given in paragraph 8.1 is to be
replaced by, for example:

"the uncertainty quoted is dominated by the uncertainty due to the resolution of
the instrument being calibrated for which a rectangular probability distribution
has been assumed".

or

"the uncertainty quoted is dominated by the uncertainty due to mismatch for
which a U-shaped probability distribution has been assumed".
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Appendix D

Some sources of error and uncertainty in electrical
calibrations

The following is a list of the more common sources of systematic error and uncertainty
(after correction) with brief comments about their nature. Further, more detailed,
advice is given in other UKAS publications on calibration, the IEE Monograph Series
of Titles, as well as other sources.

D1

D11

D2

D2.1

D2.2

D3

D3.1

Instrument calibration

The uncertainties assigned to the values on a calibration certificate for the
calibration of an instrument, whether measuring equipment or a reference
standard.

Secular stability

The performance of all instruments must be expected to change to some extent
with the passage of time. Passive devices such as standard resistors or high
grade rf and microwave attenuators may be expected to drift slowly with time.
An estimate of such a drift has to be assessed on the basis of values obtained
from previous calibrations. It cannot be assumed that a drift will be linear. Data
needs to be displayed in a graphical form and a curve fitting procedure that
gives a progressively greater weight to each of the more recent calibrations has
to be followed to allow the most probable value at the time of use to be assessed.
The degree of complexity in curve fitting is a matter of judgement; in some cases
drawing a smooth curve through the chosen data points by hand can be quite
satisfactory. Whenever a new calibration is obtained the drift characteristic will
need re-assessment. The corrections that are applied for drift are subject to
uncertainty based on the scatter of data points about the drift characteristic.
The magnitude of the drift and the random instability of an instrument, and the
accuracy required will determine the periodicity of calibration.

With complex electronic equipment it is not always possible to follow this
procedure as changes in performance can be expected to be more random in
nature over relatively long periods. Checks against passive standards can
establish whether compliance to specification is being maintained or whether a
calibration with subsequent equipment adjustment is needed.

Measurement (or service) conditions

If the laboratory measurement environment is different from that required for
a calibration, then due allowance has to be made for any influence condition that
could affect the measurement results and possibly determine the need for re-
calibration. Ambient temperature is often the most important influence and
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D3.2

D3.3

D4

D4.1

D4.2

information on the temperature coefficient of, for example, resistance standards
has to be sought or determined. Variations in relative humidity also affect the
values of unsealed mica capacitors and inductors. The influence of barometric
pressure on certain electrical measurement standards can also be significant. At
rf and microwave frequencies, ambient temperature can affect the performance
of, for example, attenuators, impedance standards that depend on mechanical
dimensions for their values and precision components. Devices that incorporate
thermal compensation, such as power sensors, can be affected by rapid
temperature changes that can be introduced by handling or exposure to sunlight
or other sources of heat.

It is also necessary to be aware of the possible effects of electrical operating
conditions, such as power dissipated, harmonic distortion, or level of applied
voltage being different when a device is in use from when it was calibrated.
Resistance standards, resistive voltage dividers and attenuators at any
frequency are examples of devices being affected by self-heating and/or applied
voltage. It should also be ensured that all equipment is operating within the
manufacturer’s stated range of supply voltages.

The effects of harmonics and noise on ac calibration signals may have an
influence on the apparent value of these signals. Similarly, the effects of any
common-mode signals present in a measurement system may have to be
accounted for.

Interpolation of calibration data

When an instrument with a broad range of measurement capabilities is
calibrated there are practical and economic factors which limit the number of
calibration points. Consequently the value of the quantity to be measured and
its frequency may be different from any of the calibration points. When the
value of the quantity lies between two calibration values, consideration needs
to be given to systematic errors that arise from, for example, scale non-linearity.

If the measurement frequency falls between two calibration frequencies, it will
also be necessary to assess the additional uncertainty due to interpolation that
this can introduce. One can only proceed with confidence if:

(a) a theory of instrument operation is known from which one can predict a
frequency characteristic, or there is additional frequency calibration data
from other models of the same instrument,

and wherever reasonable,
(b) the performance of the actual instrument being used has been explored with

a swept frequency measurement system to verify the absence of resonance
effects or performance aberrations due to manufacturing imperfections.
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Resolution

The limit to the ability of an instrument to respond to small changes in the
quantity being measured, referred to as resolution, is treated as a systematic
component of uncertainty. In a digital instrument it can be considered as + %
the least significant digit to which the instrument responds on the range in use,
providing it can be assumed that there is no hysteresis with respect to the input
quantity. In an analogue instrument it is determined by the practical ability to
read the position of a pointer on a scale. The presence of electrical noise causing
fluctuations in instrument readings will commonly determine the usable
resolution.

Lay-out of apparatus

The physical lay-out of one item of equipment with respect to another and the
relationship of these items to the earth plane can be important in some
measurements. Thus a different arrangement between calibration and
subsequent use of an instrument may be the source of systematic errors. The
main effects are leakage currents to earth, interference loop currents, and
electromagnetic leakage fields. In inductance measurements it is necessary to
define connecting lead configuration and be conscious of the possible effects of
an earth plane or adjacent ferromagnetic material. The effect of mutual heating
between apparatus may also need to be considered.

Thermal emfs

These are generated at junctions of dissimilar materials if there is a
temperature difference; they are significant in dc measurements when low
voltages are being measured. In ac/dc transfer measurements of voltage the
polarity of the dc supply is reversed and an arithmetic mean is taken of two sets
of dc measurements. Generally an allowance has to be made as a systematic
component of uncertainty for the presence of thermal emfs.

Loading and lead impedance

The finite input impedance of voltmeters, oscilloscopes and other voltage sensing
instruments may so load the circuit to which they are connected as to cause
significant systematic errors. Corrections may be possible if impedances are
known.

The impedance and finite electrical length of connecting leads or cables may also
result in systematic errors in voltage measurements at any frequency. The use
of four-terminal connections minimises such errors in some dc and ac
measurements.
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D8.3

D9

D9.1

D9.2

D9.3

D9.4

For capacitance measurements, the inductive property of the connecting leads/
may be important, particularly at higher values of capacitance and/or frequency.

Similarly for inductance measurements the capacitance between connecting

leads may be important.

RF mismatch errors and uncertainty

At rf and microwave frequencies the mismatch of components to the character-
istic impedance of the measurement system transmission line can be one of the
most important sources of error and of the systematic component of uncertainty
in power and attenuation measurements, since the phases of voltage reflection
coefficients are not usually known.

In a power measurement system, the power, P,, that would be absorbed in a
load equal to the characteristic impedance of the transmission line has been
shown by [8] to be related to the actual power, P;, absorbed in a wattmeter
terminating the line by the equation
P L 2 2
Py = — L _ (1 - 2|Tg| [Ty |cos@+|Tg[* [y |*).
1- |FL |2

D(1)

where ¢ is the relative phase of generator and wattmeter voltage reflection
coefficients I'; and I',. When I'; and I'; are small this equation becomes

P
P, = —— (1 - 2|T||T;| coso). D(2)
1- |FL|

When ¢ is unknown this expression for absorbed power can have limits

P, (imits) = — 2L (1 & 2|Tg| T, 1. DEG)
1- IFLI

The calculable mismatch error is 1 - |I|> and is accounted for in the

calibration factor, while the limits of mismatch uncertainty are + 2 |I', | [T;|.

Because a cosine function characterises the probability distribution for the
uncertainty, Harris and Warner [8] show that the distribution is U-shaped with
a standard deviation, given by

2|Tg||T,|

% = 1.414|T; | T | D(4)

u(mismatch) =
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D9.5 When a measurement is made of the attenuation of a two-port component
inserted between a generator and load that are not perfectly matched to the
transmission line Harris and Warner [8] have shown that the standard deviation
of mismatch, M, expressed in dB is approximated by

8.686
M= Z""[|Ta|* (|82 + |311b|2? + T PCIsg001® + I8995 1%
2

+ T 2 AT 12 sg00 1% + 1835 19105 D(5)

where I'; and I', are the source and load voltage reflection coefficients
respectively and s,;, sy, S,; are the scattering coefficients of the two-port
component with the suffix a referring to the starting value of the attenuator and
b referring to the finishing value of the attenuator. In Reference [8] Harris and
Warner concluded that the distribution for M will approximate to that of a
normal distribution due to the combination of its component distributions. (Note:
the above expression is not the same as that given in NIS 3003 Edition 8 which
gave an expression for the limit values of mismatch. However, the above
expression is considered to be more in keeping with the principles of the Guide
and is therefore preferred.)

D9.6 The values I'; and I', used in equation D(4) and D(5) and the scattering
coefficients used in equation D(5) will themselves be subject to uncertainty
because they are derived from measurements. This uncertainty has to be
considered when calculating the mismatch uncertainty and it is recommended
that this is done by adding it in quadrature with the measured or derived value
of the reflection coefficient; for example, if the measured value of T, is 0.03
+0.02 then the value of I, that should be used to calculate mismatch
uncertainty is 0.036.

D10 Directivity

When making voltage reflection coefficient (VRC) measurements at rf and
microwave frequencies, the finite directivity of the bridge or reflectometer gives
rise to an uncertainty in the measured value of the VRC, if only the magnitude
and not the phase of the directivity component is known. The uncertainty will
be equal to the directivity, expressed in linear terms; eg a directivity of 30 dB
is equivalent to an uncertainty of +0.0316 VRC. As with D9.6 above it is
recommended that the uncertainty in the measurement of directivity is taken
into account by adding the measured value in quadrature with the uncertainty,
in linear quantities; for example, if the measured directivity of a bridge is 36 dB
(0.016) and has an uncertainty of +8 dB -4 dB (+0.01) then the directivity to be
used is (0.0162 + 0.01%)°% = 0.019 (34.4 dB).

EDITION 1 * DECEMBER 1997 PAGE 37 OF 76



M 3003 ¥ UNCERTAINTY AND CONFIDENCE IN MEASUREMENT

D11

D12

Test port match

The test port match of a bridge or reflectometer used for reflection coefficient
measurements will give rise to an error in the measured VRC due to re-
reflection. The uncertainty, u(TP), is calculated from u(TP) = TF. Iy’, where TP
is the test port match, expressed as a VRC, and Iy is the measured reflection
coefficient. When a directional coupler is used to monitor incident power in the
calibration of a power meter it is the effective source match of the coupler that
defines the value of T'; referred to in D9. As with D9.6 and D10, the measured
value of test port match will have an uncertainty which should be taken into
account by using quadrature addition.

RF connector repeatability

The lack of repeatability of coaxial pair insertion loss and, to a lesser extent,
voltage reflection coefficient is a problem when calibrating devices in a coaxial
line measurement system and subsequently using them in some other system.
Although the repeatability of particular connector pairs in use can be evaluated
by connecting and disconnecting the device, these connector pairs are only
samples from a whole population. To obtain representative data for guidance for
various types of connectors in use is beyond the resources of most measurement
laboratories. Reference [9] provides advice on the specifications and use of
coaxial connectors including guidance on the repeatability of the insertion loss
of connector pairs. ‘
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Appendix E

Some sources of error and uncertainty in mass calibrations

The following is a list of the more common sources of errors and uncertainties in mass
calibration with brief comments about their nature. They may not all be significant at
all levels of measurement, but their effect should at least be considered when
estimating the overall uncertainty of a measurement.

E1l

El.1

E2

E2.1

E3

E3.1

Reference weight calibration

The reference weights will have uncertainties stated on the certificate of
calibration issued by either a UKAS accredited laboratory, a national standards
laboratory or other body acceptable to UKAS.

Secular stability of reference weights

It is also necessary to take into account the likely change in mass of the
reference weights since their previous calibration. This change can be estimated
from the results of successive calibrations of the reference weights. If such a
history is not available, then it is usual to assume that they may change in mass
by an amount equal to their uncertainty of calibration between calibrations. The
stability of weights can be affected by the material and quality of manufacture
(eg, ill-fitting screw knobs), surface finish, unstable adjustment material,
physical wear and damage, atmospheric contamination. The figure adopted for
stability will need to be reconsidered if the usage or environment of the weights
changes. The calibration interval for reference weights will need to be based on
the stability of the weights.

Weighing machine/weighing process

The performance of the weighing machine used for the calibration must be
assessed to estimate the contribution it makes to the overall uncertainty of the
weighing process. The performance assessment needs to cover those attributes
of the weighing machine that are significant to the weighing process. For
example, the length of arm error (assuming it is constant) of an equal arm
balance, need not be assessed if the weighing process only uses substitution
techniques (Borda’s method). The assessment will need to include some or all of
the following:

(a) repeatability of measurement;
(b) linearity within the range used;

(c¢) digit size/weight value per division, ie readability;
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E4

E4.1

E4.2

E4.3

(d) eccentricity (off centre load), especially if groups of weights are placed on the
weighing pan simultaneously; magnetic effects (eg magnetic weights, or the
effect of force balance motors on cast iron weights);

(e) temperature effects, eg differences between the temperature of the weights
and the weighing machine;

(f) length of arm error.

Guidance on the assessment of the above can be found in NAMAS publication
NIS 0416 [10].

Air buoyancy effects

The accuracy with which air buoyancy corrections can be made depends on how
well the density of the weights are known, and how well the air density can be
determined. The density of weights can be determined by some laboratories, but
for most mass work assumed figures are used. The air density is usually
calculated from an equation (see NIS 0416 [10]) after measuring the air
temperature, pressure and humidity. For the highest levels of accuracy, it may
also be necessary to measure the carbon dioxide content of the air. The figures
that follow are based upon an air density range of 1.079 kg m™ to 1.291 kg m*
which can be produced by ranges of relative humidity from 30% to 70%, air
temperature from 10°C to 30°C and barometric pressure from 950 millibar to
1050 millibar.

For mass comparisons a figure of 1 part in 10° of the applied mass is typical
for common weight materials such as stainless steel, plated brass, German silver
and gunmetal. For cast iron the figure may be as much as +3 parts in 10° and
for aluminium as much as +30 parts in 10°. The uncertainty can be reduced if
the mass comparisons are made within suitably restricted ranges of air
temperature, pressure and humidity. If corrections are made for the buoyancy
effects the uncertainty can be virtually eliminated, leaving just the uncertainty
of the correction.

Certain weighing machines display mass units directly from the force they
experience when weights are applied. It is common practice to reduce the effects
of buoyancy on such devices by the use of an auxiliary weight, known as a
spanning weight, which is used to normalise the readings to the prevailing
conditions, as well as compensating for changes in the machine itself. This
spanning weight can be external or internal to the machine. If such machines
are not spanned at the time of use the calibration may be subject to an
increased uncertainty due to the buoyancy effects on the loading weights. For
weighing machines which make use of stainless steel, plated brass, German
silver or gunmetal weights this effect may be as much as 16 parts in 10°. For
cast iron weights the figure may be as much as +18 parts in 10° and for
aluminium weights as much as +45 parts in 10°.
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For the ambient conditions stated above the uncertainty limits due to buoyancy
effects may be +110 parts in 10° and +140 parts in 10° respectively for
comparing water and organic solvents with stainless steel mass standards, and
+125 parts in 10° and +155 parts in 10° respectively for direct weighing.

Environment

Apart from air buoyancy effects, the environment in which the calibration takes
place can introduce uncertainties. Temperature gradients can give rise to
convection currents in the balance case, which will affect the reading, as will
draughts from air conditioning units. Rapid changes of temperature in the
laboratory can affect the weighing process. Changes in the level of humidity in
the laboratory can make short-term changes to the mass of weights, while low
levels of humidity can introduce static electricity effects on some comparators.
Dust contamination also introduces errors in calibrations. The movement of
weights during the calibration causes disturbances to the local environment.
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Appendix F

Some sources of error and uncertainty in temperature
calibrations

The more common sources of systematic error and uncertainty (after correction) are
listed below. Each source may have several uncertainty components.

F1

F1.1

F2

F2.1

F3

F3.1

Calibration of reference thermometer

The uncertainty assigned to the calibration of the reference thermometer(s). This
will be stated on the certificate of calibration.

Measuring instruments

The uncertainty assigned to the calibration of any electrical or other instruments
used in the measurements, eg standard resistors and digital multimeters.

Further influences

Additional uncertainties in the measurement of the temperature using the
reference thermometers:

(a) Drift since the last calibration of instruments in F1 and F2;

(b) Resolution of reading; this may be very significant in the case of a liquid-in-
glass thermometer or digital thermometers;

(c) Instability and temperature gradients in the thermal environment, eg,
calibration bath or furnace, and must include any contribution due to
difference in immersion of the reference standard from that stated on its
certificate of calibration;

(d) When platinum resistance thermometers are used as reference standards
any contribution to the uncertainty due to self heating effects must be
considered. This will mainly apply if the measuring current is different from
that used in the original calibration and/or the conditions of measurement
eg, ‘in air’ or in stirred liquid.
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Contributions associated with the thermometer to be calibrated

These may include the electrical factors in F2 above as well as some of the
components listed in F3. When thermocouples are being calibrated any
uncertainty introduced by compensating leads and reference junctions must be
taken into account. Similarly any thermal emfs introduced by switches or
scanner units should be investigated. When partial immersion liquid-in-glass
thermometers are to be calibrated an additional uncertainty factor to account for
effects arising from differences in depth of immersion should be included even
when the emergent column temperature is measured.

Mathematical interpretation
Uncertainty arising from mathematical interpretation, eg in applying scale

corrections or deviations from a reference table, or in curve-fitting to allow for
scale non-linearity, should be assessed.
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Appendix G

Some sources of error and uncertainty in dimensional
calibrations

The following is a list of the more common sources of errors and uncertainties in
dimensional measurements.

G1

Gl.1

G2

G2.1

G3

G3.1

G4

G4.1

Reference standards and Instrumentation

The uncertainties assigned to the reference standards and those for the
measuring instruments used to make the measurements.

Thermal effects

The uncertainties associated with differences in temperature between the gauge
being calibrated and the reference standards and measuring instruments used.
These will be most significant over the longer lengths and in cases involving
dissimilar materials. Whilst it may be possible to make corrections for
temperature effects there will be residual uncertainties resulting from
uncertainty in the values used for the coefficients of expansion and the
calibration of the thermometer itself.

Elastic compression

The uncertainties associated with differences in elastic compression between the
materials from which the gauge being calibrated and the reference standards
were manufactured. These are likely to be most significant in the more precise
calibrations and in cases involving dissimilar materials, and will relate to the
measuring force used and the nature of stylus contact with the gauge and
reference standard. Whilst mathematical corrections can be made there will be
residual uncertainties resulting from the uncertainty of the measuring force and
in properties of the materials involved.

Cosine errors

Any misalignment of the gauge being calibrated or reference standards used,
with respect to the axis of measurement, will introduce errors into the
measurements. Such errors are often referred to as cosine errors and can be
minimised by adjusting the attitude of the gauge with respect to the axis of
measurement to find the relevant turning-points which give the appropriate
maximum or minimum result. Small residual errors can still result where, for
instance, incorrect assumptions are made concerning any features used for
alignment of the datums.
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~
G5 Geometric errors

G5.1 Errors in the geometry of the gauge being calibrated, any reference standards
used or critical features of the measuring instruments used to make the
measurements can introduce additional uncertainties. Typically these will
include small errors in the flatness or sphericity of stylus tips, the straightness,
flatness, parallelism or squareness of surfaces used as datum features, and the
roundness or taper in cylindrical gauges and reference standards. Such errors
are often most significant in cases where perfect geometry has been wrongly
assumed and where the measurement methods chosen do not capture, suppress
or otherwise accommodate the geometric errors that prevail in a particular case.
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Appendix H

Examples of application for calibration

NOTES

(1)

(ii)

H1

H1l.1

H1.2

H1.3

H1.4

H1.5

The contributions and values given in the following examples are not intended
to imply mandatory or preferred requirements. Laboratories should determine
the uncertainty contributions for the particular measurement they are
performing and report the estimated uncertainty on the certificate that is issued.

In order to gain familiarity with the principles set out in this document the
reader may find it useful to examine these examples and repeat the calculations -
presented, referring to the cited equations as necessary. Although only
calibration examples are presented in this edition of M 3003 the principles
involved apply equally to testing activities, therefore staff of testing laboratories
may also find this of benefit.

Calibration of a 10 kQ resistor by voltage intercomparison

A high-resolution digital voltmeter is used to measure the voltage developed
across a standard resistor and an unknown resistor of the same nominal value
as the standard, when the series-connected resistors are supplied by from a
constant current source. The value of the unknown resistor, Ry , is given by

V
Ry =(Rg+ Ry +Rp) —,
Vs

where Rg = Calibration value for the standard resistor,
R, = Relative drift in R since the previous calibration,
R, = Relative change in Ry due to the temperature of the oil bath,
V, = Voltage across Ry, -
Vs = Voltage across R .

The calibration certificate for the standard resistor reported an uncertainty of
+1.5 ppm at a level of confidence of not less than 95% (& = 2).

A correction was made for the estimated drift in the value of Rg. The uncertainty
in this correction, R, was estimated to have limits of +2.0 ppm.

The relative difference in resistance due to temperature variations in the oil
bath was estimated to have limits of £0.5 ppm.

The same voltmeter is used to measure Vy and Vgand although the uncertainty
contributions will be correlated the effect is to reduce the uncertainty and it is
only necessary to consider the relative difference in the voltmeter readings due
to linearity and resolution, which was estimated to have limits of +0.2 ppm for
each reading.
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H1.6 Type A evaluation: Five measurements were made to record the departure from
unity in the ratio Vy /Vy in ppm. The readings were as follows:

+10.4, +10.7, +10.6, +10.3, +10.5

From equation (2), Mean value V = +10.5 ppm

From equations (4) and (5) u(V) = s(V) = 2%8_ = 0.0706 ppm
5

H1.7 Uncertainty budget

value Probability u,(Ry) v

Symbol Source of uncertainty +ppm distribution | Divisor ¢ +ppm or
U

Rg Calibration of standard resistor 1.5 normal 2.0 1.0 0.765 oo
R, Uncorrected drift since last 2.0 rectangular N3 1.0 1.155 oo
calibration

R, Effect of the temperature of oil bath 0.5 rectangular V3 1.0 0.289 o0
Vs Voltmeter across Ry 0.2 rectangular N3 1.0 0.115 o0
Vi Voltmeter across Ry 0.2 rectangular V3 1.0 0.115 o0
\% Repeatability 0.071 normal 1.0 1.0 0.071 4
u(Ry) Combined standard uncertainty : normal 1.418 |>500
U Expanded uncertainty normal (k=2) 2.836 |>500

H1.8 Reported result
Measured value of 10 kQ resistor is: 10 000.11 Q + 0.03 Q
The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor £ = 2, providing a level of confidence of

approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.

NOTE: This example illustrates that even when the random component of uncertainty is
observable it may not be significant.

H2  Calibration of a power sensor at a frequency of 18 GHz

H2.1 The measurement involves the calibration of an unknown power sensor against
a standard power sensor by substitution on a stable, monitored source of known
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H2.2

H2.3

H2.4

H2.5

H2.6

H2.7

low source impedance. The measurement is made in terms of Calibration Factor,
defined as

Incident power at reference frequency
Incident power at calibration frequency

Calibration Factor =

for the same power sensor response, and is determined from the following:

Calibration Factor, Ky = (Kg + Dg) x 8DC x 8M x OREF

where: K = Calibration Factor of the Standard Sensor,
Dy = Drift in Standard Sensor since the previous calibration,
oDC = Ratio of DC voltage outputs,
oM = Ratio of Mismatch Losses,

SREF = Ratio of reference power source (short-term stability of 50
MHz reference).

Four separate measurements were made which involved disconnection and
reconnection of both the unknown sensor and the standard sensor on a power
transfer system. All measurements were made in terms of voltage ratios that are
proportional to calibration factor.

None of the uncertainty contributions is considered to be correlated to any
significant extent.

Mismatch Uncertainties = 200 I';I's % and 200 [Ty %,
where

Iz = 0.02 at 50 MHz and 0.07 at 18 GHz
I'y = 0.02 at 50 MHz and 0.10 at 18 GHz
Iy = 0.02 at 50 MHz and 0.12 at 18 GHz

These values include the uncertainty in the measurement of I" as described in
Appendix D9.6.

The Standard Power Sensor was calibrated by an accredited laboratory 6 months
before use, the expanded uncertainty (+1.1%) was quoted for a coverage factor
k=2

The long-term stability of the standard sensor was estimated from the results
of 5 annual calibrations to have rectangular limits not greater than +0.4% per
year. A value of +0.2% is assumed as the previous calibration was within 6
months.

The instrumentation linearity uncertainty was estimated from measurements
against a reference attenuation standard. The expanded uncertainty for & = 2
of £0.1% applies to ratios up to 2:1.
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H2.8 The measured results were as follows:

No. Calibration Factor
93.45%
92.20%
93.95%
93.02%

W N

From equation (2), Mean value K, = 93.16%.

From equations (4) and (5) w(Ky) = s(Ky) = l?/i_lé = 0.3707%.
4
H2.9 Uncertainty budget
value Probability u(Ky) v,
Symbol Source of uncertainty +% distribution | Divisor ¢ +% or
Vs
K Calibration factor of standard 11 normal 2.0 1.0 0.55 o0
Dg Drift since last calibration 0.2 rectangular V3 1.0 0.116 oo
8DC Instrumentation linearity 0.1 normal 2.0 1.0 0.05 o0
SREF | Stability of 50 MHz reference 0.2 rectangular V3 1.0 0.116 o0
Mismatch:
M, Standard sensor at 50 MHz 0.08 U-shaped V2 1.0 0.06 oo
M, Unknown sensor at 50 MHz 0.08 N2 1.0 0.06
M, Standard sensor at 18 GHz 1.40 N2 1.0 0.99
M, Unknown sensor at 18 GHz 1.68 N2 1.0 1.19
K, Repeatability 0.37 normal 1.0 1.0 0.37 3
u(Ky) Combined standard uncertainty . 1.69 |>500
U | Expanded uncertainty 3.39 |>500

H2.10 Reported result
The Calibration Factor at 18 GHz is 93.2 % + 3.4 %.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor 2 = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.

NOTES:

(1) For the measurement of calibration factor, the uncertainty in the absolute value of the 50 MHz
reference source need not be included if the standard and unknown sensors are calibrated using
the same source, within the timescale allowed for its short-term stability.

(2) This example illustrates the significance of mismatch uncertainty in measurements at relatively
high frequencies.

(3) In a subsequent use of a sensor it may be necessary to increase the total uncertainty if the

random component of uncertainty exceeds that during calibration due to the use of other
connector pairs (see paragraph D12).
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H3

H3.1

H3.2

H3.3

H3.4

H3.5

H3.6

H3.7

Calibration of a 30 dB coaxial attenuator

The measurement involves the calibration of a coaxial step attenuator at 10 GHz
using a dual channel 30 MHz (IF) substitution measurement system. The
measurement is made in terms of the attenuation in dB between a matched
source and load from the following:

Ay=A, -A+Ap+Dyp+Ly+ R+ M+ A, +Ag

where: A, = Indicated attenuation with unknown attenuator set to zero
A, = Indicated attenuation with unknown attenuator set to 30 dB
A,; = Calibration of reference IF attenuator
D,; = Drift in reference since last calibration
L,, = Departure from linearity of mixer
R, = Error due to resolution of detection system
M = Mismatch error
A, = Effect of signal leakage
A, = Repeatability

The result is corrected for the calibration of the IF attenuator using the results
from a calibration certificate, which gave an uncertainty (£0.01dB) at a level of
confidence of 95% (k = 2).

No correction is made for drift but the limits (+0.002dB) were estimated from
the results of the previous three calibrations.

No correction is made for mixer linearity; the uncertainty was estimated from
a series of linearity measurements over the dynamic range of the system to be
+0.002 dB/10dB. This gives an uncertainty of £0.006 dB at 30 dB for which the
probability distribution is assumed to be rectangular.

The resolution of the detection system was estimated to cause possible rounding
errors of one-half of one least significant recorded digit ie +0.005 dB.

No correction is made for mismatch; the mismatch uncertainty (+0.022dB) is
calculated using equation D(5), where I', = I'; = 0.03, s,;, = 0.05, s;;, = 0.09,
Sy, = 0.05, sy, = 0.01, s,;, =1 (0 dB) and s,,, = 0.031 (30 dB). These values
include the uncertainty in the measurement of I', ; I'; , s;; and s,, - see
paragraph D9.6.

Four measurements were made which involved setting the reference level with
the step attenuator set to zero and then measuring the 30 dB setting, the results

were

No. Attenuation

1 30.04 dB
2 30.07 dB
3 30.03 dB
4 30.06 dB
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From equation (2), Mean value A, = 30.05dB.
From equations (4) and (5)  u(4,) = s(Ap) = 9218 - 0.009dB.
V4
H3.8 Uncertainty budget
value Probability ufAy) v,
Symbol Source of uncertainty +dB distribution | Divisor | ¢, +dB or
Uopr
A Calibration of reference attenuator 0.01 normal 2.0 1.0 0.0050 oo
Dy Drift since last calibration 0.002 rectangular V3 1.0 0.0012 oo
Ly Mizxer linearity 0.006 rectangular V3 1.0 0.0035 oo
R, Resolution of detector system 0.005 rectangular V3 1.0 0.0029 o0
M Mismatch 0.022 normal 1 1.0 0.0220 o0
A, Leakage 0.001 rectangular V3 1.0 0.0006 00
Ap Repeatability 0.009 normal 1.0 1.0 0.0090 3
u(Ay) Combined standard uncertainty | 0.0248 [>100
U Expanded uncertainty normal (k=2) | 0.0495 |>100

H3.9 Reported result

The measured value of the 30 dB attenuator at 10 GHz is 30.05 dB + 0.05 dB.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor £ = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.

NOTES:

1)

(2)

3

Combination of relatively small uncertainties expressed in dB is permissible since log,(1+x) =
x when x is small and 2.303log,,(1+x) = x. For example: 0.1dB corresponds to a power ratio of
1.023 and 2.303log,,(1+0.023)= 0.0227.

Thus relatively small uncertainties expressed in dB may be combined in the same way as those
expressed as relative values eg percentage etc.

For attenuation measurements, the probability distribution for rf mismatch uncertainty is
dependent on the combination of at least three mismatch uncertainties and can be treated as
having a normal distribution; see Section 9 of Appendix D.

In a subsequent use of an attenuator it may be necessary to increase the total uncertainty if
the random component of uncertainty exceeds that during cahbratlon due to the use of other
connector pairs (see Appendix C, Section 9).
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H4

H4.1

H4.2

H4.3

H4.4

H4.5

. H4.6

H4.7

Calibration of a weight of nominal value 10 kg of OIML Class M1

The calibration is carried out using a mass comparator whose performance
characteristics have previously been determined, and a weight of OIML Class
F2. The unknown weight is obtained from

Measured value of unknown weight, Wy, = Wy + Dg + &I, + 6C + Ab.

where: Wy = Weight of the standard,
Dy = Drift of standard since last calibration,
dI, = The rounding of the value of the least significant digit of the
indication,
8C = Difference in Comparator readings,
Ab = Correction for air buoyancy.

The calibration certificate for the standard mass gives an uncertainty of £30 mg
at a level of confidence of approximately 95%.

The monitored drift limits for the standard mass have been set equal to the
k = 2 (approximately 95% confidence level) uncertainty of its calibration, and are
+30 mg.

The least significant digit I, for the mass comparator represents 10 mg. Digital
rounding 8I, has limits of +0.5I, for the indication of the values of both the
standard and the unknown weights. Combining these two rectangular
distributions gives a triangular distribution, with uncertainty limits of +I,, that
is £10 mg. '

The linearity error of the comparator over the 2.5 g range permitted by the
laboratory’s quality system for the comparison was estimated from previous
measurements to have limits of +3 mg.

A previous Type A evaluation of the repeatability of the measurement process
(10 comparisons between standard and unknown) gave a standard deviation,
s(W), of 8.7 mg. This test replicates the normal variation in positioning single
weights on the comparator, and therefore includes effects due to eccentricity
errors.

No correction is made for air buoyancy, for which the uncertainty limits were
estimated to be +1 ppm of nominal value ie £10 mg.
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H4.8 Three results were obtained for the unknown weight using the conventional
technique of bracketing the reading with two readings for the standard. The
results were as follows:

No. weight comparator standard unknown - standard
on pan reading mean

standard +0.01g

1 unknown +0.03 g +0.0156 g +0.015¢
standard +0.02 g

2 unknown +0.04g +0.015 ¢ +0.025 g
standard +001g

3 unknown +0.03 g +0.010g +0.020¢g

standard +0.01g
mean difference +0.02 g

mass of standard 10 000.005 g
calibration result 10 000.025 g

H4.9 Since three comparisons between standard and unknown were made (using 3
readings on the unknown weight), this is the value of n that is used to calculate
the standard deviation of the mean

W(Wy = s(W,) = S8 _ 8.7 _ 50mg.

B

H4.10 Uncertainty budget

value Probability uWy) v,
Symbol Source of uncertainty +mg distribution | Divisor c; +mg or
Vs
Ws Calibration of standard weight 30.0 normal 2.0 1.0 15.0 oo
D Uncorrected drift since last 30.0 rectangular 3 1.0 17.32 oo
calibration
oI, Digital rounding error, comparison 10.0 triangular V6 1.0 4.08 oo
8C Comparator linearity 3.0 rectangular V3 1.0 1.73 0
Ab Air buoyancy (1 ppm of nominal 10.0 rectangular V3 1.0 5.77 o0
value) -
We Repeatability normal 5.0 9
u(Wy ) Combined standard uncertainty 2455 | >500
U Expanded uncertainty normal (k=2) | 49.10 | >500
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H4.11 Reported result

H5

H5.1

H5.2

H5.3

H5.4

H5.5

H5.6

The measured value of the 10 kg weight is: 10 000.025 g +0.049 g.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor 2 = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements. ‘

Calibration of a weighing machine of 205 g capacity by 0.1 mg digit

The calibration is carried out using weights of OIML Class E2. Tests will
normally be carried out for linearity of response across the nominal capacity of
the weighing machine, eccentricity effects of the positioning of weights on the
load receptor, and repeatability of the machine for repeated weighings near full
load. The span of the weighing machine has been adjusted using its internal
weight before calibration. The following uncertainty calculation is carried out for
a near full loading of 200 g. The machine indications are obtained from

Unknown indication, Iy = Wg + Dg + 0l + A+ I

where: Wy = Weight of the standard,
D¢ = Drift of standard since last calibration,
8I, = The rounding of the value of one digit of the indication,
A, = Correction for air buoyancy,
I, = Repeatability of the indication.

The calibration certificate for the stainless steel 200 g standard mass gives an
uncertainty of +0.1 mg at a level of confidence of approximately 95% (k = 2).

No correction is made for drift, but the calibration interval is set so as to limit
the drift to +0.1 mg. The probability distribution is assumed to be rectangular.

No correction is made for the rounding due to the resolution of the digital
display of the machine. The least significant digit on the range being calibrated
corresponds to 0.1 mg and there is therefore a possible rounding error of
+0.05 mg. The probability distribution is assumed to be rectangular.

No correction is made for air buoyancy. As the span of the weighing machine
was adjusted with its internal weight before calibration, the uncertainty limits
were estimated to be 1 ppm of the nominal value ie= 0.2 mg.

NOTE: For aluminium weights, a likely value for these uncertainty limits would be +30 ppm of the
nominal value.

The repeatability of the machine was established from a series of 10 readings
(Type A evaluation) which gave a standard deviation, s(Wg), of 0.05 mg. The
degrees of freedom for this evaluation is 9, ie (n - 1).
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Only one reading was taken to establish the weighing machine indication for
each linearity and eccentricity point. For this calibration point the weighing
machine indication, I, , was 199.9999 g when the 200 g standard mass was
applied. The value of n that is used to calculate the standard deviation of the
mean of the indication, using the previously obtained repeatability standard
deviation, s(Wp), is therefore one, then

ulp) = s(Wp) = Wr) _ 0.05 _ 405 mg

o1

H5.8 Uncertainty budget

value Probability u(ly) v
Symbol Source of uncertainty + mg distribution | Divisor ¢; + mg or
Vor
W Calibration of standard weight 0.1 normal 2.0 1.0 0.05 oo
Dy Uncorrected drift of standard weight | 0.1 rectangular V3 1.0 0.058 oo
since last calibration
oI, Digital rounding error 0.05 rectangular V3 1.0 0.029 oo
A, Air buoyancy (1 ppm of nominal 0.2 rectangular V3 1.0 0.115 oo
value)
I, Repeatability of indication 0.05 normal 1.0 1.0 0.05 9
u(ly) | Combined standard uncertainty normal 0.150 >500
U Expanded uncertainty _ normal (k=2 . 0.300 >500
H5.9 Reported result

Hé6

H6.1

For an applied weight of 200 g the indication of the weighing machine was
199.9999 g +0.30 mg.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor £ = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.

Calibration of a Grade 2 gauge block of nominal length 10 mm

The calibration was carried out using a comparator with reference to a grade K
standard gauge block of similar material. The length of the unknown gauge
block, Ly , was determined from

Ly =Lg + Ly + 8L - [L(odt + 08T + Dg + 8C + Lyg, +L, ,

where: Lg Certified length of the standard gauge block at 20°C

L, = Drift with time of certified length of standard gauge block
8L = Measured difference in length
L = Nominal length of gauge block
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H6.2

H6.3

H6.4

H6.5

o = Mean thermal expansion coefficient of the standard and
unknown gauge blocks

6t = Difference in temperature between the standard and
unknown gauge blocks ;

6a. = Difference in thermal expansion coefficients of the standard

and unknown gauge blocks

8T = Differencein mean temperature of gauge blocks and reference
temperature of 20°C when 8L is determined

D, = Discrimination and linearity of the comparator

8C = Difference in coefficient of compression of standard and
unknown gauge blocks

Ly, = Variation in length with respect to the measuring faces of the
unknown gauge block

L, = Repeatability of measurement

The value of Lg was obtained from the calibration certificate for the standard
gauge block. The associated uncertainty was +0.03 pm (k = 2).

The change in value L,, of the standard gauge block with time was estimated
from previous calibrations to be zero with an uncertainty of +15 nm. From
experimental evidence and prior experience the value of zero was considered the
most likely, with diminishing probability that the value approached the limits.
A triangular distribution was therefore assigned to this uncertainty contribution.

The thermal expansion coefficient applicable to each gauge was assumed to have
a value, o, of 11.5 pm m™! °C? with limits of + 1 pm m™ °C™". Combining these
two rectangular distributions the difference in thermal expansion coefficient
between the two blocks, 8a, is + 2 pm m™ °C™ with a triangular distribution. For
L = 10 mm this corresponds to +20nm/°C. This difference will have two
influences:

(a) The temperature difference &t between the two gauge blocks was estimated
to be zero with limits of +0.08°C, giving rise to a length uncertainty of
+1.6 nm.

(b) The difference 8T between the mean temperature of the two gauge blocks
and the reference temperature of 20°C was measured and was assigned
limits of £0.2°C, giving rise to a length uncertainty of +4 nm.

As the influence of 8o appears directly in both these uncertainty contributions
they are considered to be correlated and, in accordance with paragraph 6.3, the
corresponding uncertainties have been added before being combined with the
remaining contributions. This is included in the uncertainty budget as &,,.

The error due to discrimination and linearity of the comparator D, was taken
as zero with limits of £0.05um assessed from previous measurements. Similarly,
the difference in elastic compression 8C between the standard and unknown
gauge blocks was estimated to be zero with limits of +0.005 pm.
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H6.6 The variation in length of the unknown gauge block, Ly, was considered to
comprise two components: (i) Effect due to incorrect central alignment of the
probe; assuming this misalignment was within a circle of radius 0.5 mm,
calculations based on specifications for grade C gauge blocks indicted an
uncertainty of £17 nm. (i) Effects due to surface irregularities such as
scratches or indentations; such effects have a detection limit of approximately
25 nm when examined by experienced staff. Quadrature combination of these
contributions gives an uncertainty due to surface irregularities of +30 nm.

H6.7 The repeatability of the calibration process (Lg) was established from previous
measurements using gauge blocks of similar type and nominal length. This
Type A evaluation, based upon 11 measurements, yielded an experimental
standard deviation s(Ly) as follows:

From equation (4) s(Lg) = 0.0160pm.

H6.8 The calibration of the unknown gauge was established from a single
measurement; however, as the conditions were the same as for the previous
evaluation of repeatability the standard uncertainty due to repeatability can be
obtained from this previous value of standard deviation with n = 1, because
only one reading is made for the actual calibration.

From equations (5) and (6)
u(Ly) = sy = SER - 00160 _ 4 4160um.
n Vi
The measured result for the unknown gauge block was 9.99994 mm.
H6.9 Uncertainty budget
value Probability ulLy) v;
Symbol Source of uncertainty + nm distribution | Divisor c; +nm or
Vet
Lg Calibration of the standard gauge 30 normal 2.0 1.0 15.0 =)
block ;
D, Change in value of standard gauge 15 triangular ] 1.0 6.1 oo
block with time
D, Discrimination and linearity of 50 rectangular N3 1.0 28.9 oo
comparator
8C Difference in elastic compression 5.0 rectangular V3 1.0 2.9 o0
Sy Temperature effects 5.6 triangular V6 1.0 2.3 o0
Ly, Variation in length of unknown 30 rectangular | V3 1.0 17.3 o0
gauge block
Lg Repeatability 16 normal 1 1.0 16.0 10
u(Ly) | Combined standard uncertainty normal ‘ 40.8 |>400
U Expanded uncertainty . normal (k=2) 81.6 |.400
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H6.10 Reported result
The measured length of the gauge block is 9.99994 mm +0.08 pm.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor £ = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.

NOTE: This uncertainty value compares with the Class C uncertainties accepted by UKAS of
+£0.08 pm for gauges of this size and is in line with the associated uncertainty of
measurement of +0.08 pm as given in BS 4311:1993.

H7 Calibration of a Type N thermocouple at 1000°C

H7.1 A Type N thermocouple is calibrated against two reference standard Type R
thermocouples in a horizontal furnace at a temperature of 1000°C. The emfs
generated by the thermocouples are measured using a digital microvoltmeter via
a selector/reversing switch. All the thermocouples have their reference junctions
at 0°C. The test thermocouple is connected to the reference point using
compensating cables.

H7.2 The temperature £, of the hot junction of the test thermocouple is given by

t, = t(Vis + 8Vig + 8Vigp + 8V - zos) + 8t + S

SO
C
= ts(‘fts) + CS * SVLSI + CS " S.VESZ + CS * 8VR - C—sstos + 8tD + StF
S0 .

The voltage V() across the test thermocouple wires with the cold junction at
0 °C during the calibration is

Vx(t)sz(tx)+__A_t_—_St"_X=ViX+8ViX,+8Vix2+8VR+8VLX+ﬂ—_8_tE

Cx CXO CX CXO
where
ts(V) = Temperature of the reference thermometer in terms of voltage
with the cold junction at 0 °C. The function is given in the
calibration certificate.
Vs, Vix = Indication of the microvoltmeter,

8V, , 8V, = Voltage corrections due to the calibration of the microvoltmeter,

8V, , 8Vy, = Voltage corrections for rounding errors due to the resolution of
the microvoltmeter,
dVy = Voltage correction due to contact effects of the reversing switch,
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8t,s, 8ty = Temperature corrections due to the reference temperatures,

Cs, Cy = Sensitivity coefficients of the thermocouples for voltage at the
measuring temperature of 1000 °C,

Cso, Cxy = Sensitivity coefficients of the thermocouples for voltage at the
reference temperature of 0 °C,

ot = Drift of the reference thermometers since last calibration,
oty = Temperature correction due to non-uniformity of the furnace,
t = Temperature at which the test thermocouple is to be calibrated

(calibration point),

At =t -ty = Deviation of the temperature of the calibration point from the
temperature of the furnace,
oV, x = Voltage correction due to the compensation leads.

The reported result is the output emf of the test thermocouple at the
temperature of the hot junction. Because the measurement process consists of
two parts - determination of the temperature of the furnace and determination
of the emf of the test thermocouple - the evaluation of uncertainty has been split
into two parts.

The Type R reference thermocouples are supplied with calibration certificates
that relate the temperature of their hot junctions with their cold junctions at
0 °C to the voltage across their wires. The expanded uncertainty U is +0.3 °C
with a coverage factor 2 = 2. No correction is made for drift since the last
calibration but an uncertainty of +0.3° C has been estimated from previous
calibrations.

The voltage sensitivity coefficients of the reference and test thermocouples have
been obtained from reference tables as follows:

Thermocouple 1000 °C 0°C

reference Cs = 0.077 °C/pV Cso = 0.189 °C/uV
unknown Cx = 0.026 °C/pV Cxo = 0.039 °C/nV

The least significant digit of the microvoltmeter corresponds to a value of 1 pV.

~ This results in possible rounding errors, 8V, and 8V, , due to resolution of

+0.5 1V for each indication.

Corrections were made to the microvoltmeter readings by using data from the
calibration certificate. Drift and other influences were considered negligible
therefore only the calibration uncertainty U of + 2.0 pV (k = 2) is to be included
in the uncertainty budget.
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H7.8 Residual parasitic offset voltages due to the switch contacts have been estimated
to be zero within 2 pV.

H7.9 The temperature of the reference point of each thermocouple is known to be 0 °C
within +1 °C.

H7.10 The temperature gradients inside the furnace had been measured. At 1000 °C
deviations from non-uniformity of temperature in the region of measurement are
within +1 °C.

H7.11 The compensation leads had been tested in the range 0 °C to 40 °C. Voltage
differences between the leads and the thermocouple wires were estimated to be
less than 5 pV.

H7.12 The sequence of measurements is as follows: 1st Standard, Test Thermocouple,
2nd Standard, 2nd Standard, Test Thermocouple, 1st Standard. The polarity is
then reversed and the sequence repeated. Four readings are thus obtained for
all the thermocouples. This sequence reduces the effects of drift in the thermal
source and parasitic thermocouple voltages. The results were as follows:

Thermocouple 1st standard Test 2nd standard
thermocouple thermocouple thermocouple

+10500 pV +36245 pV +10503 pv
Voltage, after any correction for the digital voltmeter +10503 pVv +36248 pv +10503 pVv
calibration -10503 pv -36248 pV -10505 pV

-10504 pv -36251 pV -10505 pV
Absolute mean values 10502.5 pVvV 36248 pv 10504 pVv
Temperature of hot junctions 1000.4°C ‘ 1000.6°C
Mean temperature of furnace 1000.5 °C

H7.13 The reported thermocouple output emf will be corrected for the difference
between the nominal temperature of 1000 °C and the measured temperature of
1000.5 °C. The reported thermocouple output will be

V, = 36248 x 1000 v - 36230 pv.
1000.5

H7.14 In this example it is assumed that the procedure requires that the difference
between the two standards must not exceed 0.3 °C. If this is the case then the
measurement must be repeated and/or the reason for the difference investigated.

H7.15 From the four readings on each thermocouple, one observation of the mean

voltage of each thermocouple was deduced. The mean voltages of the reference
thermocouples are converted to temperature observations by means of
temperature/voltage relationships given in their calibration certificates. These
temperature values are highly correlated. By taking the mean they are combined
into one observation of the temperature of the furnace at the location of the test
thermocouple. In a similar way one observation of the voltage of the test
thermocouple is extracted. In order to determine the random uncertainty
associated with these measurements a Type A evaluation had been carried out
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on a previous occasion. A series of ten measurements had been undertaken at
the same temperature of operation which gave pooled estimates of the standard
deviation for the temperature of the furnace and the voltage of the thermocouple

to be calibrated.

The resulting standard uncertainties were as follows.

From equations (4) and (5)

and

u(Vy) = 5,(Viy) =

S p(ts)

ulty) = sp(;s) = =

s,(Vip) _ LépVv

n

= 1.6

yn

V1

0.1

V1

nv.

= 0.10°C,

The value of n = 1 is used to calculate the standard uncertainty because in the
normal procedure only one sequence of measurements is made at each
temperature.

H7.16 Uncertainty budget (temperature of the furnace)

EDITION 1 * DECEMBER 1997

value Probability u) | v
Symbol Source of uncertainty x distribution | Divisor ¢ +°C or
Ugsr
8tg Calibration of standard thermocouples 03°C normal 2.0 1.0 0.150 oo
&ty Drift in standard thermocouples 0.3°C rectangular V3 1.0 0.173 o
8V, Voltmeter calibration 2.0 pv normal 2.0 0.077 | 0.077 oo
8V, Switch contacts 2.0 nV | rectangular V3 0.077 | 0.089 o0
8tog Determination of reference point 0.1°C rectangular N3 1.0 0.058 oo
tg Repeatability 0.1°C normal 1.0 1.0 0.10 9
8V, | Voltmeter resolution 0.5V | rectangular | 3 0.077 [ 0.022 [
Sty Furnace non-uniformity 1.0 °C rectangular N3 1.0 0.577 oo
uT) Combined standard uncertainty >500
U Expanded uncertainty
H7.17 Uncertainty budget (emf of test thermocouple)
value Probability u, (V) v;
Symbol Source of uncertainty + distribution | Divisor c; VvV or
[
Aty Uncertainty of correction for 0.642 °C normal 10 |[385 24.7 |>500
furnace temperature (from
previous uncertainty budget)
8V x Effects due to compensation leads 5.0 pvV rectangular V3 1.0 2.89 oo
8Vix, Voltmeter calibration 2.0 uv normal 2.0 1.0 1.0 oo
6Vy Switch contacts 2.0 nV | rectangular V3 1.0 1.155 oo
Otox Determination of reference point 0.1°C rectangular N3 |25.6 1.48 oo
u(Vy) Repeatability 1.6 nv normal 1.0 1.0 1.6 9
V5 Voltmeter resolution 0.5 nV | rectangular V3 1.0 0.29 oo
u(T) Combined standard uncertainty : 25.0 >500
U Expanded uncertainty _ 50.0 >500
(k=2) :
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H7.18 Reported result

The type N thermocouple shows, at the temperature of 1000.0 °C, with its cold |
junction at a temperature of 0 °C, an emf of 36 230 pV + 50 pV.

The reported expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor k¢ = 2, providing a level of confidence of
approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements.
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Appendix I

Expression of uncertainty for a range of values

I

I1.0

In.1

I1.2

I2

I12.1

12.2

12.3

I12.4

Introduction

On occasions it is convenient to provide a statement of uncertainty which
describes a range of values rather than a single result.

The Guide deals with expression of uncertainties for the reporting of a single
value of a measurand, or more than one parameter derived from the same set
of readings. In practice many measuring instruments are calibrated at several
points on a range and the use of an expression describing the uncertainty at any
of these points can be desirable.

This Appendix therefore describes the situations when this can occur, explains
how it can be dealt with using the principles of this code of practice and provides
an illustration of the process using a worked example.

Principles

When measurements are made over a range of values and the corresponding
sources of uncertainty are examined it may be found that some are absolute in
nature (ie can be expressed in the same units as the measurand) and some are
relative in nature (ie can be expressed in terms of percentage, parts per million
etc.).

It is possible, of course, to calculate a value for the expanded uncertainty for
each reported value over the range. This can give problems when reporting
values near zero as a relative term may not be appropriate and an absolute term
has to be used. Conversely, when reporting values higher up the scale it may be
desirable to express the uncertainty in relative terms as this is often how
instrument specifications are expressed.

If the instrument being calibrated is subsequently to be used in a situation
where a further analysis of uncertainty is required the user may also require to
express these uncertainties in both absolute and fractional terms. However if the
user has only been provided with a single value of uncertainty for each reported
value, it would be difficult to extract the absolute and relative parts from these
single values. Reporting uncertainties in both absolute and relative terms
therefore provides more information to the user than if a series of single values
are quoted, and additionally is often more representative of the way instrument
specifications are expressed.

The process of calculating a value of expanded uncertainty describing a range
of values is identical to that for single values except that the absolute and
relative terms are identified as such and, effectively, a separate uncertainty
evaluation is carried out for each. These evaluations are carried out in the
manner already described in this publication.
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12.5

I3

I3.1

13.2

13.3

- 13.4

13.5

The results of these evaluations are then expressed as separate absolute and
relative terms. Traditionally this has been expressed in the form

+(a [relative units] + b [absolute units]).

This linear addition of quantities is not in accordance with the principles
embodied in the Guide, unless there happens to be a high degree of correlation
between the absolute and relative terms - which is not usually the case, or one
of the components is dominant (see Appendix C). The two values should
normally be reported separately with an appropriate statement describing how
they should be combined. A suggested statement is given in the example in I3.

Example of uncertainty evaluation for a range of values

In this example a 6'%-digit electronic multimeter is calibrated on its 1 V dc
range using a multi-function calibrator.

The calibrations were carried out at 0.1 V increments from zero to 1 V and
additionally at 1.5 V and 1.9 V. Only one measurement was carried out at each
point and therefore reliance was placed on a previous evaluation of repeatability
using similar multimeters.

No corrections were made for known errors of the calibrator as these were
identified as being small relative to other sources of uncertainty (see 4.3). An
appropriate allowance for uncorrected errors has been therefore been included
in the uncertainty evaluation.

The reading on the multimeter under test, V},,,,, can be described as follows:
Vovu = Vear + Vo + Vyg + Ve + Vi + Vi + Viy + Vs

where Vg, Voltage setting of multifunction calibrator.

Vo Drift in voltage of multifunction calibrator since last
calibration. :

Vye = Uncorrected errors of multifunction calibrator.

Ve = Temperature coefficient of multifunction calibrator.

V., = Linearity and zero offset of multifunction calibrator.

\’ = Thermoelectric voltages generated at junctions of connecting
leads, calibrator and multimeter.

Voy = Effects on voltmeter reading due to imperfect common-mode
rejection characteristics of the measurement system.

8Vies = Rounding errors due to the resolution of multimeter being

calibrated.

The calibration uncertainty was taken from the certificate for the multi-function
calibrator. This had a value of + 2.8 ppm as a relative uncertainty but there was
an additional £0.5 pV in absolute units (& = 2).
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The manufacturer’s 1-year performance specification for the calibrator was
deemed to include the following effects:

V5, Vue » Ve These contributions were assumed to be relative in nature.
\T This contribution was assumed to be absolute in nature.

The specification for the calibrator on the 1 V dc range was +8 ppm of reading
+1 ppm of full-scale. On this particular calibrator the full-scale value is twice the
range value; therefore the absolute term is +2 V x 10 = £2 pV. The performance
of the calibrator had been verified by examining its calibration data and history,
using internal quality control checks and ensuring that it was used within the
temperature range and other conditions as specified by the manufacturer. A
rectangular distribution was assumed.

The effects of thermoelectric voltages, V,, for the particular connecting leads
used had been evaluated on a previous occasion. This was considered to be an
absolute uncertainty contribution and a value of 1 pV was assigned, with a
rectangular distribution.

Effects due to common-mode signals, V,,, had also been the subject of a previous

‘evaluation and a value of + 1 nV, with a rectangular distribution, was assigned.

This contribution was considered to be absolute in nature.

No correction is made for the rounding due to the resolution Vg of the digital
display of the multimeter. The least significant digit on the range being
calibrated corresponds to 1 uV and there is therefore a possible rounding error
8Viygs of £0.5 uV. The probability distribution is assumed to be rectangular and
this term is absolute in nature.

A previous evaluation had been carried out on the repeatability of the system
using a similar voltmeter. Ten measurements were carried out at zero voltage,
1 V and 1.9 V. Repeatability at the zero scale point was found not to be
significant compared with other absolute contributions. The value of s(q))
(Equation 4) was found to be 2.5 ppm for both the 1 V and 1.9 V scale points. As
only one measurement is made when the calibration is carried out this is divided

by V1 (Equation 5) to give a value of 2.5 ppm for s(g).
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13.11 Uncertainty budget
Symbol value value Probability uV) u(V) v;
Source of uncertainty (relative) | (absolute) | distribution | Divisor | ¢; (relative) | (absolute) | or
+ ppm xpV’ ppm nv Vo
Ve | Calibration uncertainty 2.8 0.5 N 2 1 14 0.25 o0
Vspse | 1-year specification of 8.0 2.0 R N3 1 46 1.15 o
multifunction calibrator
Vr Thermoelectric voltages - 1.0 R N3 1 - 0.58 o0
Veu Effect of common-mode voltages - 1.0 R 3 1 - 0.58 o0
8Vzgs | Rounding due to multimeter - 0.5 R N3 1 - 0.29 oo
resolution ’
\ Repeatability 2.5 - N 1 1 2.5 - 9
u, (V) | Combined standard uncertainty normal 5.42 146 |>100
U Expanded uncertainty 108 2.92 |>100
I3.12 It is assumed that the results of this calibration will be presented in tabular

form. After the results the following statements regarding uncertainty can be
given:

The expanded uncertainty for the above measurements is stated in two parts:
Relative uncertainty: + 11 ppm
Absolute uncertainty: + 3 pV

The reported two-part expanded uncertainty is in each case based on a standard
uncertainty multiplied by a coverage factor k£ = 2, providing a level of confidence
of approximately 95%. The uncertainty evaluation has been carried out in
accordance with UKAS requirements. For each stated result the user may, if
required, combine the uncertainties shown by quadrature summation in either
relative or absolute units as appropriate.

PAGE 66 OF 76 EDITION 1 #* DECEMBER 1997



M 3003 * UNCERTAINTY AND CONFIDENCE IN MEASUREMENT

Appendix J

Statements of compliance with a specification

J1

J1.1

J1.2

J2

J2.1

J2.2

Introduction

In many situations it will be necessary to make a statement in calibration
certificates or test reports as to whether or not the reported result complies with
a given specification. This will often be the case for general purpose test and
measurement equipment; for measurement standards it is more likely that the
measured value and expanded uncertainty will be of interest to the user.

The need to report compliance with a specification may arise as the result of a
request from a client or may be required by the standard or method describing
the particular test or calibration.

Assessment of compliance with a specification
It will normally be necessary to consider the uncertainty of measurement when
making a statement of compliance (or non-compliance) with a stated

specification. The diagram below shows four cases of a result, with expanded
uncertainty limits, relative to the specification under consideration.

Case A Case B Case C Case D

Specified___ o e e e — } e e = —— —— —— —
upper limit

Specified

lower limit

In Case A, the reported value (indicated by ), extended by the uncertainty of
measurement, lies within the specification limits. A statement of compliance can
therefore be made for the confidence level stated.

In Case B, the reported value lies within the specification limits. However the
uncertainty overlaps one specification. limit and therefore a statement of
compliance cannot be made for the confidence level stated. The result does,
however, mean that compliance with the specification is more likely than non-
compliance.
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J2.3

J2.4

J3

J3.1

In Case C, the reported value lies outside the specification limits. However the
uncertainty overlaps one specification limit and therefore a statement of non-
compliance cannot be made for the confidence level stated. The result does,
however, mean that non-compliance with the specification is more likely than
compliance.

In Case D, the reported value, extended by the uncertainty of measurement, lies
outside the specification limits. A statement of non-compliance can therefore be
made for the confidence level stated.

In cases A and D above it is clear that a statement of compliance or non-
compliance can be made because the uncertainty, at the given level of
confidence, does not compromise such a statement. For cases B and C the
situation is not so straightforward. Two suggested solutions are as follows:

(a) If possible use a more accurate method in order to reduce the uncertainty.

(b) Report the result and uncertainty with a statement that compliance (or non-
compliance) could not be demonstrated. This could also give an indication
regarding the likelihood of compliance (or non-compliance) being achieved.
A suggested statement is as follows: ‘

The measured result is below (above) the specification limit by a margin less
than the measurement uncertainty; it is therefore not possible to state
compliance (non-compliance) based on the stated level of confidence. However
the result indicates that compliance (non-compliance) is more probable than
non-compliance (compliance) with the specification limit.

In cases such as those described in J2.3(b) it is essential that the client is made
aware of the situation because the end-user is taking some of the risk that the
test item may not meet the specification.

Reporting compliance with specification

If compliance or non-compliance with a specification is clearly demonstrated, as
in cases A and D above, then a statement to this effect can be made in
certificates and reports. However care must be taken to ensure that there is no
implication that parameters that have not been measured also comply with a
specification. For this reason a broad statement such as "the equipment complies
with its specification" is not acceptable. A suggested statement of compliance is
as follows:

The equipment complies with the stated specification at the measured points, due
allowance having been made for the uncertainty of the measurements.

This statement can be modified as necessary where non-compliance with a
specification is to be reported.
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When making compliance or non-compliance statements, the specification and
the relevant clauses within it shall be unambiguously identified in the
calibration certificate or test report.

There may be cases where the uncertainty attainable for a given test or
calibration is larger than the specification for the item under consideration. A
laboratory shall not normally contract to perform work on this basis; however
reported uncertainties greater than the specification is permissible providing
such measurements form a very small part of the overall measurements. A
statement of compliance shall not be given under these circumstances but a note
shall be included indicating those uncertainties associated with the measured
values that are greater than the required specification.

Specific requirements for reporting compliance with specification in a calibration
certificate are given in NAMAS publication M12, Conditions for reporting
Calibration Results.
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Appendix K

Uncertainties for test results

K1

Kl1.1

K1.2

K1.3

K14

K1.5

K2

K2.1

Requirements for uncertainties in testing

It is a requirement for testing laboratories to quote a value of the uncertainty
of their results under certain circumstances, as described in paragraph 0.2.

It is recognised that the present state of development and application of
uncertainties in testing activities is not as comprehensive as in the calibration
fields, to which much of this document is addressed. It is therefore accepted that
the implementation of UKAS policy on this subject will take place at an
appropriate pace which may differ from one field to another. However
laboratories should be able to satisfy requests from clients, or requirements of
specifications, to provide statements of uncertainty.

Testing laboratories are therefore required to have a defined policy covering the
provision of estimates of the uncertainties of the tests performed. The laboratory
should use documented procedures for the evaluation, treatment and reporting
of the uncertainty.

Testing laboratories should consult UKAS for any specific guidance that may be
available for the testing field concerned.

The methodology for estimation of uncertainty in testing is no different from
that in calibration and therefore the procedures given in this document apply
equally to testing results. It is recommended that readers new to this subject
consult Section 1 of this document and UKAS document NIS 80, Guide to the
Expression of Uncertainties in Testing [4], to gain familiarity with the concepts
involved.

Objectives

The objective of a measurement is to determine the value of the measurand, ie
the specific quantity subject to measurement. When applied to testing, the
general term measurand may cover many different quantities, for example:

¢ the electrical breakdown characteristics of an insulating material

¢ the strength of a material

¢ the concentration of an analyte

¢ the level of emissions of electromagnetic radiation from an appliance

¢ the quantity of micro-organisms in a food sample
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¢ the susceptibility of an appliance to electric or magnetic fields

¢ the quantity of asbestos particles in a sample of air

K2.2 A measurement begins with an appropriate specification of the measurand, the

K3

K3.1

generic method of measurement and the specific detailed measurement
procedure. Knowledge of the influence quantities involved for a given procedure
is important so that the sources of uncertainty can be identified.

Sources of uncertainty
There are many possible sources of uncertainty. As these will depend on the
technical discipline involved, it is not possible to give detailed guidance here.

However the following general points will apply to many areas of testing:

(a) Incomplete definition of the test - the requirement may not be clearly
described, eg the temperature of a test may be given as 'room temperature’.

(b) Imperfect realisation of the test procedure; even when the test conditions are
clearly defined it may not be possible to produce the theoretical conditions

in practice due to unavoidable imperfections in the materials or systems
used. '

(c) Sampling - the sample may not be fully representative. In some disciplines,
such as microbiological testing, it can be very difficult to obtain a
representative sample.

(d) Inadequate knowledge of the effects of environmental conditions on the
measurement process, or imperfect measurement of environmental
conditions.

(e) Personal bias and human factors; for example:
¢ Reading of scales on analogue indicating instruments.
¢ Judgement of colour.

¢ Reaction time, eg when using a stopwatch.

(f) Instrument resolution or discrimination threshold, or errors in graduation
of a scale.

(g) Values assigned to measurement standards (both reference and working)
and reference materials.

(h) Changes in the characteristics or performance of a measuring instrument
since the last calibration.

(i) Values of constants and other parameters used in data evaluation.
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K3.2

K3.3

K3.4

K3.5

() Approximations and assumptions incorporated in the measurement method
and procedure.

(k) Variations in repeated observations made under similar but not identical
conditions - such random effects may be caused by, for example: electrical
noise in measuring instruments; short-term fluctuations in local
environment, eg temperature, humidity and air pressure; variability in the
performance of the person carrying out the test.

These sources are not necessarily independent and, in addition, unrecognised
systematic effects may exist that cannot be taken into account but contribute to
error. It is for this reason that UKAS encourages - and sometimes insists on -
participation in inter-laboratory comparisons, participation in proficiency testing
schemes, and internal cross-checking of results by different means.

Information on some of the sources of these errors can be obtained from:

(a) Data in calibration certificates - this enables corrections to be made and
uncertainties to be assigned.

(b) Previous measurement data - for example, history graphs can be constructed
and can yield useful information about changes with time.

(¢) Experience with or general knowledge about the behaviour and properties
of similar materials and equipment.

(d) Accepted values of constants associated with materials and quantities.
(e) Manufacturers’ specifications.
(f) All other relevant information.

These are all referred to as Type B evaluations because the values were not
obtained by statistical means. However the influence of random effects is often
evaluated by the use of statistics; if this is the case then the evaluation is
designated Type A.

Definitions are given in paragraph 2.9 for Type A and Type B evaluations and
further detail on the means of evaluation is given in Sections 3 and 4.

It is recognised that in certain areas of testing it may be known that a
contribution to uncertainty exists but it is not possible to quantify it. In such
cases, if a statement of uncertainty is required, this contribution can be omitted
providing a note is associated with the uncertainty statement to this effect (see
Section 9.2 of NIS80 [4]).
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K3.6 In some fields of testing it may be the case that the contribution of measuring

K3.7

K4

K4.1

instruments to the overall uncertainty can be demonstrated to be insignificant
when compared with the repeatability of the process. Such instruments have to
be shown to comply with the relevant specifications, normally by calibration, but
where this specification has a minimal effect on the overall uncertainty then the
expanded uncertainty can, if required, be evaluated using the statistical
processes described in Section 3 and, where relevant, Appendix B of this
document. '

Some analysis processes appear at first sight to be quite complex, for example
there may be various stages of weighing, dilutions and processing before results
are obtained. However it will sometimes be the case that the procedure requires
standard reference materials to be subject to the same process, the result being
the difference between the readings for the analyte and the reference material.
In such cases most of the process can be considered to be negatively correlated
(see paragraph 6.2) and the uncertainty of measurement can be evaluated from
the resolution and repeatability of the process; matrix effects may also have to
be considered.

Process

The process of assigning a value of uncertainty to a measurement result is
summarised below:

(a) Identify all sources of error that are likely to have a significant effect.

(b) Assign values to these using information such as described in K3.3, or in the
case of Type A evaluations, calculate the standard deviation using equations
4 and 5.

(¢) Express each uncertainty value as the equivalent of a standard deviation
(paragraphs 4.4 to 4.8).

(d) Consider each uncertainty component and decide whether any are
interrelated and whether a dominant component exists (see Section 6 and
Appendix C respectively).

(e) Add any interdependent components algebraically (ie, account for whether
they act together or cancel each other) and derive a net value.

(f) Take the independent components and the values of any derived net
components and, in the absence of a dominant component, combine them by
taking the square root of the sum of the squares. This gives the combined
standard uncertainty (equation 9).

(h) Multiply the combined standard uncertainty by a coverage factor (&),
selected on the basis of the confidence level required, to provide the
expanded uncertainty (U) (equation 11).
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(g) Report the result, expanded uncertainty, coverage factor and confidence level
in accordance with Section 8.

K4.2 If one uncertainty contribution is significantly larger than the others then
modifications may be required to this procedure. In the case of a dominant
component derived from Type B evaluation, see Appendix C. If the repeatability
of the system is significant, and its effects are considered by using a Type A
evaluation, it may be necessary to use the procedure in Appendix B.
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Appendix L

Use of calculators and spreadsheets

L1

L1.1

L2

L21

L2.2

L3

L3.1

L3.2

L3.3

L4

L4.1

Introduction

Due to the nature and quantity of the calculations involved it is inevitable that
some form of electronic processing will be involved in these calculations. This
Appendix gives brief details of precautions that may be necessary under these
circumstances.

Use of calculators

Most scientific calculators are easily capable of all the calculations required for
the estimation of measurement uncertainty. It is recommended that readers of
this document gain familiarity with the functions involved by repeating the
calculations presented in Appendix H; practise with this can give rise to a better
understanding of the process as well as giving the users confidence in their own
abilities. ‘

It is also recommended that, where possible, intermediate results are stored in
the calculator memory for use later, or are written down to a reasonable amount
of significant figures, in order to prevent the cumulative effects of rounding
errors having a significant effect on the result. Most scientific calculators work
with sufficient accuracy so that they do not in themselves introduce any
significant errors - with one notable exception (see Section L4).

Use of spreadsheets

The widespread use of personal computers has made repetitive calculations a
much easier process than in the past. It is possible to construct a spreadsheet
using the various equations presented in this document in order to perform the
uncertainty calculations. The time spent constructing the spreadsheet can easily
be recovered by the subsequent ease of producing, and amending, uncertainty
budgets.

It is recommended that a sample of results produced by a spreadsheet
programme is checked manually using a scientific calculator to ensure that

correct results are being generated.

Further information on the use of spreadsheets can be found in reference [11].

Calculation of standard deviations

Many scientific calculators include statistical functions for calculation of
standard deviations in accordance with Equation 4. The calculator key
associated with this function will usually be marked o, ; or, sometimes, s.
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L4.2

L4.3

1L4.4

14.5

It will often be the case that this particular function is not capable of evaluating
small values of standard deviation correctly. The following data set is presented
as an example:

1000.025
1000.015
1000.019
1000.021

The value of s that is obtained from this data, using Equation 4, should be
0.00416. Most calculators will either:

(a) Display an error message, or
(b) Display a value of zero, or
(c) Display an incorrect non-zero value.

The reason that many calculators cannot evaluate these results correctly can be
seen by examining the equation for the estimated standard deviation

} 1 o s
s(q) J(n—l) J;‘(q, q)? .

The mean value g is subtracted from each of the observed values g; of the
quantity g. These differences are quite small numbers (5 x 10 relative to the

“1000.025 value in the example above). Each is then squared; the example here

gives a relative result of 25 x 10" This is beyond - or at least comparable to -
the internal resolution of most calculators and therefore errors can result.

The solution to this problem is to use only the few least significant digits in the

set of data. So, for the data above, the numbers

0.025
0.015
0.019
0.021

can be entered, yielding the correct value of s(g;): 0.00416.

NOTE: This could equally have been evaluated using just the last tWo digits, ie 25, 15, 19 and 21.
However it is useful to include a decimal point as this will then appear in the correct place
in the results thereby minimising the likelihood of errors being made.

It is possible that electronic spreadsheets will also suffer from this form of
rounding error; therefore suitable checks should be devised to evaluate any such
effects.
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