Hydrothermal liquefaction of by-products from the second-generation bioethanol industry

BUENOS AIRES 2023

11th WORLD CONGRESS OF WCCEII -CHEMICAL ENGINEERING

Carmina Reyes Plascencia^{a,b}, Matías Cagno^c, Pierre Cabot^c, Néstor Tancredi^{a,b} ^aEnergías Renovables, IPTP, Facultad de Química, Universidad de la República, Pando, Uruguay. ^bFisicoquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.

^cCentro de Investigaciones en Biocombustibles 2G, Latitud – Fundación LATU, Montevideo, Uruguay.

RATIONALE

METHODOLOGY

Box–Behnken experimental design with three central points

Cube Std Error of Design

1.181

1.181 C+: 100

✓C: Ethanol (%)

Gas

Acetone

→ Hydrochar

Thermochemical transformations biomass carried out in a solvent or environments water-rich at temperatures between 250 and 400 °C and high pressures, normally selfgenerated (5-25 MPa) for reaction times in the order of minutes.¹

2.9725 25.664

At these conditions, the intermediate molecules resulting biomass from hydrolysis undergo various chemical reactions such condensation, as cyclization, and polymerization leading to the formation of hydrophobic macromolecules, called **biocrude**.

Light Biocrude

Coded Equation R²=0.9953

+18.62

+2.14 A

+4.59 B

+6.75 C

+0.58 AB

+2.69 AC

-1.94 A²

-3.10 B²

-1.64 C²

+2.44 A²B

-3.75 A²C

-2.90 AB²

Coded

Equation

R²=0.9994

(MJ/kg) 0000

Value

+20.17

+2.72 A

+2.13 B

-6.80 C

-2.98 AB

-2.61 AC

-2.02 BC

-0.78 A²

+1.41 B²

-12.05 C²

+8.07 A²B

+1.98 A²C

-9.91 AB²

Study varibles B+: 9 1.181 250-350 °C Temperture 0-100 % Ethanol 1.181 Solution:Slurry* 1:1-9:1 * Dry slurry B-: 3 1.181 1.181 C-: 0 A-: 250_A: Temperature (°C₁^{A+: 350} LHT conditions: Atmosphere: N₂ Pressure: P_{water} + P_{ethanol} + P_{productos} Time: 90 min Slurry (d.b.): 22.5 g Slurry Acid-insoluble lignin: 58.7 % Moisture (w.b.): 75.47 % Wash water / Ethanol

Light Biocrude

Temperature: 328.7 °C Ethanol: 96.6 % Solution:Slurry: 7.6

Heavy Biocrude Temperature: 250 °C Ethanol: 50 % Solution:Slurry: 9

Yield maximization

is avoided.

40 To Light Biocrude • Heavy Biocrude

Liquid

Vacuum

Low Heating Value Calculation²

Test (Temperature - % Ethanol - S:S)

CONCLUSIONS

- It was possible to optimize the yield of light and heavy biocrude and predict it through the proposed experimental design.
- The LHV of light biocrude is in the range of 15.1-30.8 MJ kg⁻¹, and the LHV of heavy biocrude is in the range of **23.6-33.6 MJ kg**⁻¹.
- Some compounds of industrial interest were identified, such as phenols and benzaldehydes.

> LHT is a suitable process for producing liquid biofuels from by-products of second-generation ethanol production.

ACKNOWLEDGMENT

Project: FSE_1_2018_1_152911

DE INVESTIGACIÓN

E INNOVACIÓN

Volume

0.5 I

Solid

Filtration

BIBLIOGRAPHY

¹Delgado-Plaza, et al., 2022. Sustainability 15, 169.

²Sou Hosokai, et al., Fuel Processing Technology, 152, 399, 2016.