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The major highlights of the paper are
summed up below:
• The source and fate of nanoplastics and its
distribution in the environment

• Eco-toxicity of nano-sized plastic particles
and its deleterious impact on the living
system.

• The toxic impact of nanoplastics on
human health in terms of disturbance of
metabolism.

• Nanoplastics mediated gut microbiome
dysbiosis in humans resulting in meta-
bolic disturbances.

• Current scenario and ongoing manage-
ment strategies towards plastic pollution
Fig. Degradation of plastics, source and fate of nanoplastics in the Environment.
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In the current scenario, plastic pollution has become one of the serious environmental hazard problems due to its im-
proper handling and insufficiency in degradation. Nanoplastics (NPs) are formedwhen plastic fragments are subjected
to ultraviolet radiation, natural weathering, and biodegradation. This reviewpaper focuses on the source of origin, bio-
accumulation, potential nanoplastics toxicity impact towards environment and human system and management strat-
egies towards plastic pollution.Moreover, this study demonstrates that nanoplastics interferewithmetabolic pathways
and cause organ dysfunction. A wide range of studies have documented the alteration of organism physiology and be-
havior, caused by NPs exposure. A major source of NPs exposure is via ingestion because these plastics are found in
foods or food packaging, however, they can also enter the human body via inhalation but in a less well-defined
form. In recent literature, the studies demonstrate the mechanisms for NP uptake, affecting factors that have been dis-
cussed followed by cytotoxic mechanisms of NPs. However, study on challenges regarding NPs toxicity for the risk as-
sessment of human health is limited. It is important to perform and focus more on the possible impacts of NPs on
human health to identify the key challenges and explore the potential impacts of their environmental accumulation
and its toxicity impacts.
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1. Introduction

The plastic discovery, due to its strong chemical qualities, superior insu-
lation, lightweight, and strength has ushered in a new era of convenience in
both manufacturing and daily life (Gu et al., 2020a, 2020b). Plastics are
widely employed in industry, building, medicine, research, agriculture,
and other industries due to their unique properties. Despite advancements
in plastic recycling and management policies, improper plastic disposal
continues to be a global problem that results in uncontrolled environmental
discharge (Barría et al., 2020). Plastics can be carried from terrestrial
ecosystem to aquatic ecosystem due to their physical and chemical resil-
ience, and hydrophobicity. Plastics are found in several types of ecosys-
tems, including soil, groundwater, freshwater, marine water and in the
atmosphere (Wang et al., 2021). Plastic fragments that are difficult to de-
grade due to their increased molecular weight and solid crystal structure
have become one of the world's most serious and hazardous environmental
issues (Yu et al., 2018). The enormous and unregulated application of plas-
tics has resulted in eco-toxicity and environmental misbalance. As per the
current plastic consumption rate in world, it is estimated that by year
2050, the plastic production will get elevated to 33 million, which will
have larger impact on the environment (Lavers et al., 2022)

The most important aspect is that plastics degrade naturally at a very
slow rate. Only between 6– and 26 % of these plastics gets recycled
i.e., up to 94 % of them will likely be landfilled or enter nature via other
channels (Alimi et al., 2018). There are research works that explain the
toxicity of macro plastics. The macro plastic later upon weathering and
fragmentation gets transformed into microplastics and nanoplastics which
has become a major concern of eco-toxicity (Guo et al., 2020; Duan et al.,
2021). Large fragments of plastic on physical, chemical, and biological
degradation are broken down into microplastics (MPs) (1–5 mm) or nano
plastics (NPs) (1 nm–1000 nm) (Jahnke et al., 2017).

The disintegration of larger plastic particles is caused by a variety of nat-
ural causes, including water's mechanical forces, ultraviolet (UV) radiation
and biological metabolism i.e., when particles interact with both intracellu-
lar and extracellular living tissues, biological processes take place (Mattsson
et al., 2018; Kwak and An, 2021). Since the demand for NPs is increasingly
emerging and accumulating in all environmental compartments, there are
limited research on the toxic response of NPs on humans. In recent decades,
these particles have caused significant concern among the general popula-
tion. As a result, the interaction of NPs with ecosystems and human popula-
tions, as well as the possible negative impacts on terrestrial, aquatic
ecosystem and human health is needed to be studied extensively (Rubio
et al., 2020; Sridharan et al., 2021).

There are two main routes of entry for NPs, namely inhalation, and in-
gestion. However, some data are also available regarding exposure via the
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skin. Using personal care products and cosmetics, or touching the face
after contact with contaminated surfaces, can induce dermal exposure to
nanoplastics indirectly. Due to their small size, these plastic particles may
penetrate the skin barrier, such as through pores. One of the most prone
areas for penetration of very small particles is the scalp's pores (Abbasi,
2021). Microfibers released from synthetic textiles are among many sources
of these particles, whichmay result in inhalation in the outdoor or indoor en-
vironment (Prata, 2018). Several studies have found a link between inhaling
these synthetic fibers and respiratory diseases (Facciolà et al., 2021). As NPs
are inhaled, they reach the airways and are deposited based on particle char-
acteristics, patient characteristics, and pulmonary anatomy; smaller particles
(e.g., PE) reach deeper airways more readily. Small airways are reached by
sedimentation and diffusion of particles between 1 and 5 m, while upper
airways are deposited by impaction with rhino-pharyngeal walls. The depo-
sition of nanoparticles follows Brownian motion (Carvalho et al., 2011;
Bakand et al., 2012). A variety of mechanisms are responsible for the
removal of MP particles after they are deposited, such as ciliary movement,
phagocytosis from macrophages in the alveoli, and lymphatic migration
causes the overproduction of reactive oxygen species (ROS), inflammatory
cellular responses, oxidative stress, and cytotoxicity (Xu et al., 2019).

The rate of exposure by inhalation is comparatively lower than the rate
of exposure by ingestion. Therefore, oral ingestion of NPs has received
more attention since recent studies revealed these compounds were found
in abundant quantities in different food and beverage sources, as well as
in human feces (Liebmann et al., 2018). It has been documented that NPs
can cause eco-toxicological effects on plants, phytoplankton, invertebrates,
and other organisms in marine environments (Kumar et al., 2021). NPs can
accumulate in large marine organisms by trophic transfer from prey to
predator. It has been reported that NPs can transfer from algae to zooplank-
ton and fish (Cole et al., 2013). These fishes are eaten up by higher animals
or humans, resulting in the accumulation/ uptake of NPs into the body.
There has been a wide variety of neutral or deleterious effects reported
across several species. In humans, the oral route of exposure is considered
to have significant effect in exerting NPs toxicity (Alaraby et al., 2022).
The NPs generally inhibit the reproduction, growth, and development of or-
ganisms, contribute to oxidative stress, disrupt the gut microbiome, and
change gene expression (Fig. 1) (Huuskonen et al., 2020; Kogel et al.,
2020). However, the insufficient data on the effects of NPs necessitates
the need to understand the nature of nanoplastics on terrestrial and fresh-
water ecosystems. In furtherancewith this, it is important to study the char-
acteristic factors responsible for the migration of NPs in various ecosystems
and its adverse effects. These nanoplastics tend to become more hazardous
and lethal upon interaction with the living system pertaining to their size,
higher surface area to volume ratio which makes them more reactive
(Sharma et al., 2022). Furthermore, these Nanoplastics also plays a role of



Fig. 1. Different routes of exposure of NPs in humans, general toxicity responses and its mechanism.

S. Haldar et al. Science of the Total Environment xxx (xxxx) xxx
trojan horse, becoming a vector formany other potentially hazardous xeno-
biotics which result in upscaling of the lethal impact of nanoplastic pollu-
tion towards environment and other living system (Katsumiti et al., 2021).

Thus, this review emphasizes on the source and fate of nanoplastics and
its distribution in the environment, eco-toxicity of nano-sized plastic parti-
cles and its deleterious impact on the living system, and its relation to gut
microbiome dysbiosis and metabolic disturbances in humans, followed by
management strategies towards plastic pollution. Therefore, this review
provides a comprehensive insight on nanoplastics and its related toxicity
that could pave a way towards effective control of plastic pollution and
its negative effects on human health.

2. Use of different types plastic materials around the globe

2.1. Nano plastics and their by-products persistence in the environmental
surrounding

Nanoplastics are formed via weathering and physicochemical or biolog-
ical degradation processes of macro plastic products which can exhibit
3

colliding behavior. As defined by the nanoscale, NPs are particles with at
least one dimension in the nanoscale (1–100 nm) (Gigault et al., 2018).
Upon breaking down, a single microplastic particle -produces billions of
NP particles, indicating the widespread nanoplastic pollution around the
world (Hernandez et al., 2017). The nano-metric dimension of the plastic
molecules enables an easier penetration towards biological membranes,
transforming these particles into hazardous material (Yee et al., 2021).
NPs may contain additives, monomers, or oligomers of the plastic's compo-
nents, or dispersants that are either intentionally added or simply a
byproduct of the manufacturing process which results in enhancement of
the toxicity of these xenobiotics towards environment and human system
(Sridharan et al., 2022). As a by-product of polystyrene, styrene monomers
are released, adding to the toxicity of the material (Saido et al., 2014). In
water, polystyrene nanoplastic by-products with small molecular weight
were detected in large quantities, much higher than those being washed
out from surfaces of nanoplastics exposed to air (Tian et al., 2019). The
majority of NPswith potential for human exposure are composed of polyeth-
ylene, polyester, polyethylene terephthalate, polyetherimide, polystyrene,
polypropylene, low-density polyethylene, high-density polyethylene,
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polyvinyl chloride, polyvinylidene chloride, polycarbonate, etc. (Lavers
et al., 2022). Through the release of possibly cancer-causing substances,
plastics were demonstrated to have negative impacts on cell viability and in-
flammatory gene expression in vitro (Rodrigues et al., 2019). Phthalates and
bisphenol A are hazardous chemicals, linked to a number of health prob-
lems, including epigenetic modification, reproductive toxicity in both men
andwomen, obesity and overweight, skeletal anomalies, allergy and asthma,
and cancer (Benjamin et al., 2017).

There are three main sources of plastic particles in nano-sizes in the
environment, which include Polymer nanoparticles produced for specific
purposes, including cosmetics, 3D printer inks, or drug delivery, UV
photo degradation, mechanical action, hydrolysis, and microorganisms
can lead to plastic fragmentation, and Wastewater Treatment Plants (bio-
solids and effluent water) (Karapanagioti, 2017; Song et al., 2017;
Mendoza et al., 2018). Additionally, nano plastics can be used to produce
coatings, biomedical products, medical diagnostic devices, electronics,
magnetism, and optics (Koelmans et al., 2015). The nano-plastics upon
transformation from their parent molecule attain the altered physio-
chemical properties which affect their availability and biological activity
in the environment (Mattsson et al., 2015).

Nanoplastics get categorized into primary or secondary groups depend-
ing on their origin and source (Bradney et al., 2019). As the name suggests,
primary nano plastics are those that are introduced into the ecosystem in
their original nano-sized with particular applications and consumer
products, such as cosmetics, medicines, fibers and raw materials (Bessa
et al., 2018). They are frequently released into the environment due to in-
sufficient wastewater treatment plant (WWTP) infrastructure. Further-
more, the disposal of primary nanoplastic levels may increase as a result
of the degradation of macro plastics, called secondary nanoplastics
(Talvitie et al., 2015). Secondary nanoplastics get originated due to plastic
litter, which is distributed in ecosystems as a result of human activities and
industrial operations. Solid garbage disposal from land and individual ships
at sea, as well as coastal landfill activities, are examples of human-
generated sources. During transportation, sometimes due to accident or un-
intentional spillage of litter, secondary particles of plastic are accumulated
in a natural ecosystem (Jahnke et al., 2017).

Nanoplastics used in products such as pharmaceutical and cosmetic in-
dustries can hinder the environment by utilizing the product directly or via
wastewater through indirect activity (Sharma and Chatterjee, 2017). Most
of these NPs are removed during wastewater treatment. However, not all
particles are removed, some may get absorbed by the soil due to which
plants may constitute a considerable source of nano plastics (Talvitie
et al., 2017). Nano plastic particles also contribute as a source of medical
and research applications. However, the cosmetic industry causes a greater
amount of pollution by entering the environment through wastewater or
use. Nano plastics, as manufactured products, typically arise from terres-
trial sources. As a result of their accumulation in sewage and effluents,
nano plastic particles may accumulate in aquatic ecosystems. According
to estimates, 80 % of marine plastic comes from terrestrial sources such
Table 1
Several toxicity investigations associated with NPs in aquatic organisms.

Aquatic organisms Types of NPs Size

Scenedesmus obliquus PS NP's 70 nm
Oysters PS NP's 50 nm
Daphnia pulex PS NP's 75 nm
Sea Urchin Paracentrotus lividus Carboxyl and amine NPs 50 nm
Artemia franciscana Carboxyl and amine NPs 40-50 nm
Daphnia magna Carboxyl and amine NPs 50 nm
Crucian Carp (Carassius carassius) PS NPs 24 nm and 27 nm
Zebrafish (Danio rerio) PS NPs 50 nm
Zebrafish (Danio rerio) PS NPs 51 nm
Red tilapia (Oreochromis niloticus) PS NPs 100 nm
Zebrafish (Danio rerio) NPs of size 70 nm
Zebrafish (Danio rerio) NPs 50 nm
Fathead minnow (Pimephales promelas) PS NPs and polycarbonate NPs 41 nm
Black rockfish (Sebastes schlegelii) PS NPs 15 um
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as landfills, NPs carried by water-bodies, bio-solids and compost, and im-
proper handling and disposal of untreated wastes (Barría et al., 2020;
Ganesh Kumar et al., 2020; Kumar et al., 2020). Also, ships/boats
discharging litter and fishing nets are direct sources of marine litter
(Ganesh Kumar et al., 2020). Domestic activities such as washing, laundry,
cleaning, painting, etc. are the main source of NPs. As a result of clothes
laundry, polyester, spandex fiber, acrylic and nylon are transported to sew-
age treatment plants (UNEP, 2018). A substantial number of NPs is released
during the degradation and fragmentation of microbeads in shampoos and
scrubs. It has been reported that even plastic teabags can release billions of
nanoparticles (Hernandez et al., 2019). Other industrial sources include the
direct production of NPs and feedstocks used for themanufacture of plastics
(Yoshino et al., 2012; Phuc et al., 2014).

3. Exposure of Nano plastics towards environment and its toxic
consequence

3.1. Eco-toxicity in aquatic ecosystem

Nano plastic eco-toxicity in the aquatic environment has been
thoroughly researched and reviewed (Peng et al., 2020; Ganesh Kumar
et al., 2020; Shen et al., 2019). Bacteria, algae, arthropods, echinoderms, bi-
valves, rotifers, and fishes are affected by the NP from various trophic levels
(Brun et al., 2019). TheNPs are bio-accumulated in the tissueswhich affects
growth and reproduction, induces damage to the immune system, neuro-
toxicity, and causes metabolic disorders (Brandts et al., 2018; Pitt et al.,
2018; Bergami et al., 2019; Yin et al., 2021; Sokmen et al., 2020). More-
over, freshwater ecosystems are capable of transporting and accumulating
larger concentrations of NPs as well (Barría et al., 2020; Peng et al., 2020).

Recent research works provide a brief understanding of recent studies
involving experiment on fishes which were fed with NPs. It has been re-
ported that NPs show some toxicological/pathological effects on a variety
offishes (Table 1). Therefore, these are some of the evidenceswhich depicts
the acute and chronic toxicity related to nanoplastic exposure. In several in-
vestigations, larger polystyrene particles of roughly 100 μmor greater were
found to have no significant effect on fishes (Ašmonaitė et al., 2018). Adult
Crucian Carp and larvae may exhibit irregular feeding and mobility pat-
terns as a result of NP accumulation (Mattsson et al., 2017). Internalization
of NPs in fathead minnow has also been suggested (Greven et al., 2016),
which could lead to detectable biomarker changes in blood cells (Banaee
et al., 2019). NPs have been detected in the brains offish in rare cases, caus-
ing alterations in brain appearances and behavior (Mattsson et al., 2017) or
drastically inhibiting acetylcholinesterase (AChE) activity (Ding et al.,
2018). NPs ingested by embryos and larvae have been observed to move
to different tissues as they develop. According to the studies, NPs accumu-
late in larval guts or adult digestive tracts and the gills and liver in some
cases (Wang et al., 2019; Qiao et al., 2019). According to studies, NP toxic-
ity impacts the gut microbiota as well as biomarkers for the integrity of the
epithelial barrier, inflammation, and oxidative stress. Toxicological
Toxic response References

Toxicity to chloroplast, Reduction in chlorophyll content Besseling et al., 2014
Decrease fertilization larval hatchability. Tallec et al., 2018
Delayed egg laying, Liu et al., 2019
Embryo toxicity and embryo lethality Della Torre et al., 2014
Disturbed feeding and motility Bergami et al., 2016
Toxicity to chloroplast, disturbance of reproduction system Besseling et al., 2014
Metabolic disturbances Mattsson et al., 2015
Neurotoxicity and disturbed locomotion Chen et al., 2017
Embryo toxicity and malformation of organs Pitt et al., 2018
Toxicity to liver, brain and other enzymatic activities Ding et al., 2018
Hepatotoxicity Lu et al., 2016
Metabolic Disorders Pitt et al., 2018
Disturbance to blood cells and immune system Greven et al., 2016
Oxidative Stress, Cytotoxicity and locomotory disturbances Yin et al., 2019
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responses are often triggered by smaller plastic particles (i.e., 50 nm) and
shows the highest significance in fishes (Yong et al., 2020). Therefore,
these are some of the evidences which depicts the acute and chronic toxic-
ity related to nanoplastic exposure.

According to recent studies, nanoplastics are made up of mostly
polyvinylchloride, poly (ethylene teraphthalate), polystyrene, and polyeth-
ylene (Ter Halle et al., 2017). Since plastic nano-particles in the environ-
ment are typically formed via degradation of plastics rather than inside
laboratories or commercial practices, it is very crucial to distinguish be-
tween other engineered nanoparticle pollution and Nanoplastics pollution
(Gigault et al., 2021). The polymers in nanoplastics are hydrophobic in na-
ture thus, they are ideal for capturing other hydrophobic pollutants while
encountering. In contrast to other engineered nanoparticles, nanoplastics
are heterogeneous. They are designed to have very specific sizes and shapes
depending on the demand and purpose of their use. Nanoplastics are basi-
cally plastic polymers which are arbitrarily or accidentally and repeatedly
degraded until they reach the nanoscale size. Furthermore, the disordered,
polymeric nature of nanoplastics allows for shape and function flexibility
that many traditional engineered nanoparticles lack (Rochman et al.,
2019). Low concentrations (1 μg/ml) of naturally occurring NPs exposure
triggers responses on genes related to endocytosis,mitochondrialmetabolic
disturbance, oxidative stress, DNA repair, and detoxification. Additionally,
due to their colloidal nature and strong surface reactivity, they are more
bioavailable to aquatic species (Venel et al., 2021; Arini et al., 2022).

3.2. Eco-toxicity in terrestrial ecosystem

Animals, humans, and other external forces like water flow and animal
activity all transport NPs in the terrestrial environment. As known, soil
differs from the natural context and soil which is researched in is a complex
ecosystem with sophisticated pore patterns and a variety of living popula-
tions. NPs have accumulated on the soil surface as a result of modern agri-
cultural techniques such greater use of agricultural membranes and sludge
as well as modifications to irrigation practices. Furthermore, the plastic on
the surface may migrate below or spread around due to the disruption of
farming, harvesting, and other agricultural procedures. NPs travel down-
ward through the soil's gaps as a result of the infiltration process, which oc-
curs when water moves through the soil from top to bottom during
irrigation or rainfall. Eventually, NPs ends up accumulating in the ground-
water (Panno et al., 2019). One of the most prevalent organisms in the soil
is the earthworm, which has a layer of viscous fluid on its surface. As earth-
wormsmove, plastics may be moved spatially as a result of NPs adhering to
them (Rillig et al., 2017).

Additionally, NPs have an impact on the soil's microbiota and interfere
with the actions of enzymes involved in the carbon, phosphorus, and nitro-
gen cycles. A study also revealed reduction in the activity of key biomes that
control the cycling of nitrogen. It was found that, after being fed oatmeal
containing polystyrene NPs, the soil oligochaete Enchytraeus crypticus's
stomach contained significantly less Xanthobacteraceae, Isosphaeraceae,
and Rhizobiaceae (Zhu et al., 2018). According to a paper, Caenorhabditis
elegans, a nematode, is likewise harmed by polystyrene nanoparticles of
530 nm. The number of offspring decreased as the concentration of NPs
reached 10mg/kg. Adsorption by soil organic matter, oxidation of NPsme-
diated by organic acids, and interactions with soil minerals may all have an
impact on the bioavailability and toxicity of NPs (Kim et al., 2020).

NPs not only provide a threat to pathogens but also have an impact on
the plant growth. NPs may be absorbed, trapped, and translocate between
tissues above ground. Smaller NPs can penetrate the nucleus and affect
chromatin structure and function while larger NPs can deposit in the cyto-
plasm. Therefore, NPs have the potential to have genotoxic effects such the
production of micronuclei and cytogenetic abnormalities (Giorgetti et al.,
2020). Internalization of NPs in plants turns out to have a positive impact
on their development. As compared to the control, root elongation in
Triticum aestivum L. was increased by 89% to 123% significantly after poly-
styrene NPs exposure (Lian et al., 2020). Increase in plant biomass, nitro-
gen, and carbon was observed. Without any stress, seedlings developed
5

more quickly after being exposed to NPs. This was most likely to cause in-
creased amylase activity, hastening the production of solvable sugars
from starch granules (Lian et al., 2020). Conversely, NPs have accumulated
in wheat tissues, which have been found to affect higher trophic levels in
the food chain. Because of this, it is necessary to investigate whether the
paradoxical effects of NPs on plants are caused by soil variables or plant
features.

Researchers have studied how plastic ingestion affects reproduction,
gut microbiome profiles, behavior, and interactions between soil pollutants
and plastic particles (Chae and An, 2020). There have been several studies
performed on earthworms, since they are simple to handle in a lab setting
and function as decomposers in soil ecosystems. Although NPs have been
investigated for their impact on producers and consumers. Overall, NPs in
soil have very little effect on terrestrial ecosystems (Qi et al., 2018; Song
et al., 2019). To study oral exposure of plastics, their transport as well as
the interaction between plastic particles and physiological variables like
growth, physiological and behavioural change, locomotor activity, repro-
duction, and metabolism, researchers have used species of earthworms
like Eisenia fetida, Lumbricus terrestris, and Eisenia Andrei (Rodriguez-Seijo
et al., 2017; Rodríguez-Seijo et al., 2019; Yang et al., 2019). As a result of
ingesting and transporting plastic particles in these studies, the organism's
gut microbiomes were perturbed, and organic compounds were released
into the environment (Groh et al., 2019).

4. Nano plastic toxicity in living-system

In most metabolisms, both degradative and synthesis reactions are cat-
alyzed by enzymes and follow an ordered sequence. Ametabolic pathway is
a series of reactions that converts one compound into another (Blanco and
Blanco, 2017).Whenever these pathways are disrupted by external or inter-
nal stimuli, it results in metabolic dysfunction. The pathways disturbance is
associated with the liver, pancreas, kidney, and intestine. A dysregulated
metabolism of the liver, pancreas, and intestine causes metabolic disorder.

4.1. Impact of nanoplastics in influencing disturbed metabolism

Recent studies have examined the impacts of NPs fragments on all of the
components of the environment, including fresh water, marine water, ter-
restrial land and agroclimatic zone (Nelms et al., 2018; Ng et al., 2018;
Alimba and Faggio, 2019; Song et al., 2019; Van Weert et al., 2019; Kogel
et al., 2020; Meng et al., 2020). The oxidative stress caused by the plastics
additives in aquaculture has been found to cause noticeable negative effects
in nano-scale plastics (He et al., 2018; Miao et al., 2019). Although NPs
rarely cause death to a living organism, they do slow down the physical de-
velopment, decelerate cellular transformation, and lower the organ regen-
eration capacity. Therefore, the effects of NPs on the cells and tissues of
mammals, particularly humans, remain problematic. Despite the fact that
plastics are typically thought to possess negligible risk to people, a number
of scientific results have sparked worries about their capacity to infiltrate
tissues and the negative impacts of NPs because of their nano-size (Shen
et al., 2019). NPs accumulates into human body via food from different
food sources and water intake (Smith et al., 2018; Koelmans et al., 2019).
Perhaps unsurprisingly, plastic containers and plastic teabags are common
sources of NPs consumed by humans, also it can be accumulated via inhala-
tion (Prata, 2018; Hernandez et al., 2019). Certain reports suggest that NPs
has being detected in human stool samples, indicating that the ingested
concentration being significantly higher (Schwabl et al., 2019).

Insulin resistance is central to metabolic syndrome (MS), causing meta-
bolic dysregulation and eventual hyperglycemia and hyperlipidemia. A
high blood sugar stimulates pancreatic beta-cells to produce more insulin,
resulting in hyperinsulinemia. Overexpression of Renin Angiotensin Aldo-
sterone System (RAAS), nephron sodium uptake through RAAS, while de-
creased or no activity are increased in hyperinsulinemia (Rask Larsen
et al., 2018). As a result of dysregulated fat metabolism, free fatty acid
(FFA) production increases, resulting in lipid deposition and obesity. Obe-
sity creates inflammatory stress and dysregulation of adipocytokines. In
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addition to oxidative stress and prothrombotic states, increased FFA pro-
duction causes thrombosis through other mechanisms. Endothelial dys-
function may be caused by oxidative and inflammatory stress, which may
contribute to thrombosis. Further contributing factors to insulin resistance
include oxidative stress, obesity, dysregulated adipocytokines, and pro-
inflammatory cytokines (Hamjane et al., 2020).

The HIPPO pathway is a relatively novel mechanism that regulates
whole-body metabolism. In the absence of the Hippo executer yes associ-
ated protein (YAP) in the endocrine pancreas, more upstream components
of the Hippo pathway, such asMerlin, MST1, and YAP, are direct regulators
of death in b-cells. When the pathway is disrupted, YAP and transcriptional
coactivator with PDZ-binding motif (TAZ) translocate to nucleus and bind
with TEAD transcription factors, inducing alteration in the gene expression
involved in growth, proliferation, and survival. These represent 20-like pro-
tein kinases 1 and 2 (MST1/2) and large tumor suppressors 1 and 2
(LATS1/2) as core kinases (TAZ). There is a persistent activation loop be-
tween active caspase 3, the master apoptosis executer, under long-term
metabolic or inflammatory stress. Under prolongedmetabolic or inflamma-
tory stress, cleaved MST1 (macrophage-stimulating protein) allows the po-
tentiation of an apoptotic cascade, resulting in cell death and loss of insulin
synthesis and secretion (Ardestani et al., 2018).

Alteration in other metabolic pathways such as glycogen metabolism,
lipid metabolism, citric acid cycle, amino acid metabolism, pentose phos-
phate pathway etc. Are also responsible for mediating metabolic disorders
in humans (Fig. 2). In a study, patients had enlarged liver and kidney due
to excessive glycogen accumulation. This phenomenon is known as Glyco-
gen Storage Disease Type I (GSD Ia). Glucose-6-phosphatase (G6Pase,
encoded by G6PC), an ER-resident enzyme that is predominantly expressed
in the liver and kidney and directly catalyzes the production of free glucose
from G6P, is responsible for the development of GSD Ia (Chou et al., 2010).
When a cell loses its ability to function, G6P builds up inside the cell, acti-
vating anabolic pathways that produce lactate, lipids, and glycogen. Pa-
tients continue to have abnormalities in hepatic metabolism, including
increased glycogen synthesis and de novo lipogenesis as well as reduced
lipid -oxidation and ketone generation. These abnormalities lead to steato-
hepatitis, hepatic adenomas, and hepatocellular carcinomas. Additionally,
patients may experience hyperlipidaemia with elevated levels of VLDL
and triglycerides in the blood and renal failure (Bandsma et al., 2008; Yiu
Fig. 2. Disturbance in the metabolic pathways ind
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et al., 2008). According to a study, lipid buildup in zebrafish after exposure
to a pollutant result in liver damage (Zhou et al., 2019). The pollutant re-
duced the amount of fatty acid and lipid metabolism (fabp6 and fabp2) in
larvae and liver, according to RNA-sequence data. After exposure, the
mRNA levels of many enzymes involved in maintaining glucose homeosta-
sis, including phosphoenolpyruvate carboxykinase (PCK) in the liver and
glucokinase in larvae, all reduced. Results show that caused hepatocyte
vacuolization 334 and neoplasm necrosis in adult livers, as well as liver de-
terioration in larval zebrafish (Jiang et al., 2020).

Researchers have previously reported that unmodified polystyrene
nanoparticles with a diameter of 44 nm stimulate IL-6 and IL-8 gene expres-
sion in human gastric adenocarcinoma cells, suggesting that polystyrene
may not necessarily induce pro-inflammatory responses because of its
charge, but may instead be due to particle occurrence (Forte et al., 2016).
In addition, another study was reported to show effects of polystyrene
nanoparticles (30 nm) on the endocytosis in macrophages and HePG-2,
HCT116 human cancer cells. Induced by the particles, large vesicle-like
structures were formed, which blocked vesicle transport in the endocytic
system as well as protein distribution, leading to bi-nucleated cells (Xia
et al., 2016). Further evidence confirming the ability of polystyrene parti-
cles to produce ROS. According to their study, polystyrene particles with
a size of 500 nm can stimulate ROS production in human liver cells (Liu
et al., 2018). Besides polystyrene, an in vitro study reported that polyethyl-
ene particles showed obvious stimulation with respect to mice-derived
macrophages, results in significant increased levels of IL-6, IL-1β, and
TNF-α (Green et al., 1998). Based on these data, nanoscale plastic particles
have the potential to activate cell responses, particularly immune response
(Lehner et al., 2019).

However, numerous studies have documented pristine NPs' impacts on
in vitro cultures of human cells. There are few studies on cellular uptake of
NPs, with an inference of cellular toxicity negligible or absent, only at
higher concentration it shows significance (Rafiee et al., 2018). Some of
these studies have been performed in a range of human cell lines
(Table 2). These table documents studies of cellular uptake, significance
of cellular toxicity various concentrations of NPs. In human cell lines, it is
depicted that toxicological responses such as cell viability was triggered
by plastic particles (NPs) of size ˂40 nm (Thubagere and Reinhard,
2010). AndNPs of size 50 nm shows cell internalization and oxidative stress
ucing hepatic and pancreatic dysfunctioning.



Table 2
Several toxicity investigations associated with NPs in Human cell lines.

Cells/cell lines Types of NPs Consequences References

Caco-2 Polyethylene terephthalate NPs. Nano-PET has high propensity to cross the Caco-2 intestinal epithelial barrier model Magrì et al., 2018
Caco2 Polystyrene NP's, Particle translocation Walczak et al., 2015
Mammalian hepatocytes Fluorescent Polystyrene-NPs Internalized in mammalian hepatocytes Johnston et al., 2010
HepG2 cell line PS-NPs interacted to PS-COOH PS-NH2 Decrease cell Viability, Oxidative Stress He et al., 2020
HepG2 cell line Unmodified polystyrene NP's Altered cell line functioning Zauner et al., 2001
HepG2 cell line Polystyrene NP's Exhibited cell viability, genotoxicity, and transcriptomics, altered expression of cell

proliferation and carcinogenic genes.
Kawata et al., 2009

Panc-1 Amino-functionalized PS NP's Increased cellular uptake of particles under fluidic shear stress Kang et al., 2016
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(He et al., 2020). In an experiment, mammalian hepatocytes were exposed
to PS-NPs for 30 min of incubation period, which resulted in cellular inter-
nalization and toxicity in hepatocytes (Powell et al., 2022). Another study
documented the viability of HepG2 cells exposed to the PS-NPs, which de-
creased with the increase in concentrations. A significant reduction in cell
viability was observed on exposure of HepG2 cells to high concentration
of PS than low concentration. The toxicity of different concentrations of
PS-NH2 and PS-COOH nanoplastics, 10, 50, 100 (μg/ml) that were 50 nm
in size against HepG2 cell lines were studied. The exposure period of 24 h
exhibited cytotoxicity at elevated concentration, which was demonstrated
by significant increase in malondialdehyde, superoxide dismutase and glu-
tathione level that correspond to lipid peroxidation and oxidative stress
(He et al., 2020). NPs have a potential to enter the gastrointestinal tract
(GIT) via ingestion process. It is not knownwhether nanoparticles are capa-
ble of crossing the human tissues directly. However, oral drugs containing
polystyrene and PVC particles can cross the human gut tissues via endocytic
tissues and are found to be present in lymph tissues and in the circulation,
where the blood cells adhere to the NPs and facilitates the uptake of parti-
cles to other tissue, causing pro-inflammatory, cytotoxicity, oxidative stress,
genotoxicity (Lehner et al., 2019). Concern about human exposure to NPs
was first identified in the context of contamination of aquatic organisms
(EFSA Panel on Contaminants in the Food Chain (CONTAM) 2016). A
study reported that Mussel (Mytiulus galloprovincialis) kept in the water
tank treated with PS-NPs (110 nm) of 0.05–50 mg/L concentration for 96
h, resulted in increased mRNA levels of Hsp70, oxidant status, antioxidant
capacity, and lipid peroxidation in the digestive glands (Brandts et al.,
2018). Another study reported that Juvenile large yellow croaker kept in
the water tank treated with PS-NPs (100 nm) 104 and 106 particles/L for
14 days, resulted in decreased digestive enzymes activity (lipase, trypsin,
and lysozyme) (Gu et al., 2020a, 2020b). NPs only after passing through
fish's GITs or gills and dispersing throughout the body via the circulatory
system directly affect humans (Chae et al., 2018; Su et al., 2019). According
to another study, the bottle material influences nanoplastic, pigment, and
additive distribution. When podocytes (i.e., human kidney cells) were
exposed toNPs, it was seen that they have a heterogeneous surface, nucleus,
and foot processes, in comparison with controls, indicating that plastic
particles are potentially harmful to cell viability (Sarau et al., 2020).

Several studies were documented on hepatic tissues to study the effect
of plastics. An experiment was conducted to determine the hepatic triglyc-
eride, total cholesterol levels and hepatic pyruvate levels, to determine the
lipidmetabolism of liver using a BCA protein kit. In compared to the control
group, the levels of hepatic TG and TCH reduced dramatically, but the
levels of hepatic PYR increased significantly in the MPs-treated groups.
The transcriptional gene expressions are also affected by the action of
MPs on exposure. In comparison to the control groups, the MPs modulated
the mRNA levels of carbohydrate regulatory element binding protein,
pyruvated kinase, and citrate synthase, although glucose kinase was
unaffected. These findings suggest the alteration in lipid metabolism on
exposure to PS-MPs (Lu et al., 2018). Similar study was documented,
where 24mice were collected and treated withMPs for 1–2weeks (divided
into three groups: control groups, mice treated for one week, and mice
treated for two weeks). The first week's findings revealed that mouse livers
were damaged by oxidative stress, which resulted in an imbalance in the
antioxidant system, the gut-liver axis was disrupted, and there was an
7

increased insulin resistance. Besides the exposure period of 2 weeks, MPs
has affected pathways of Glycine, Serine, and Threonine metabolism;
Alanine, Aspartate, and Glutamate metabolism; Histidine metabolism;
Glycero-phospholipid metabolism; and Glutathione metabolism, Phenylal-
anine, Tyrosine, and Tryptophan Biosynthesis. The metabolite profiles of
substances connected to these pathways, including as cortisol, UDP-N-
Acetyl-D-Glucosamine (UDP-GlcNAc), and choline, were affected by these
results (Shi et al., 2022).

The mechanisms involved for insulin secretion and insulin resistance
have been proposed based on significant changes in cortisol levels, acetyl-
choline concentrations, andGlcNAc concentrations. The adrenal glands cre-
ate cortisol, one of the steroid hormones. Cortisol receptors are present in
majority of the body cells. In vivo, it has been demonstrated that high
plasma cortisol levels limit non-hepatic glucose utilization, elevate plasma
insulin, and boost hepatic gluconeogenesis. Additionally, cortisol and cho-
linergic signaling pathways, including as glycerophospholipid metabolism
and insulin production, are strongly linked. Acetylcholine, which travels
to the pancreas via the bloodstream, can be produced by the liver from cor-
tisol. Acetylcholine acts on anti-muscarinic acetylcholine receptors M3 in
the pancreas (M3R). As a result, the large drop in cortisol may affect insulin
secretion, resulting in insulin secretion dysregulation and insulin resistance
(Shi et al., 2022). These metabolites also interfere with the metabolism of
Glycine, Serine, and Threonine, insulin, and glycerol phospholipids in the
gut microbiota. These metabolites may undergo microbial conversion dur-
ing digestion to trimethylamine (TMA), which is subsequently oxidized in
the liver by the Flavin-containing mono‑oxygenase enzyme. Increased
plasma TMAO levels have been linked in epidemiological studies to an in-
creased risk of thrombosis and type 2 DiabetesMellitus (T2DM). As a result,
there may be an increase in the obesity-mediated insulin resistance path-
way as well as an increase in insulin secretion (Brial et al., 2018; Walter
et al., 2020). Another study demonstrated zebrafish larvae were exposed
to PSNPs for 2 days. When exposed, PSNPs accumulates in neuromasts
and the larval jaw movement is already developed, so it is easier to con-
sume particulate matter from the surrounding environment (Brun et al.,
2018). According to the findings, PSNPs were mostly found in the exocrine
pancreas, gallbladder, and gastrointestinal system. The cortisol levels in lar-
vae weremeasured after two days of exposure. The larvae had considerably
higher cortisol levels than controls following exposure to PSNP. Both insu-
lin expression and total body glucose levels were decreased. This most
likely led to an increase in cortisol levels which then triggers the expression
of the genes g6pca and pck1, which are involved in glycogenolysis and glu-
coneogenesis (Brun et al., 2019). Stress-induced high cortisol levels are as-
sociated to lower eating in larval zebrafish at a later stage of development,
which exacerbates low glucose levels and creates a negative feedback cycle
(De Marco et al., 2014). In conclusion, excessive cortisol exposure during
the early stages of life can result in adulthood-related consequences such
as irreversible epigenetic change of the glucocorticoid receptor, high
basal cortisol levels, impaired tailfin regeneration, and immunoregulation
(Wilkinson and Goodyer, 2011; Hartig et al., 2016).

4.2. Toxic impact of NPs on gut microbiome dysbiosis

There are 10 to 100 trillionmicroorganisms in the adult gut microbiota,
which is ten times as many as our total somatic and germ cells combined.
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Also, the genomes of gut microbiota (microbiome) have 100- to 150-fold
more genes than our own genomes (Backhed et al., 2005; Qin et al.,
2010). As humans have evolved, their gut microbiota has profound effects
on how they react to various situations (Hur and Lee, 2015). Genes present
in a person's intestinal microbial community (microbiome) represent a ge-
netic collection with more than one order of magnitude more genes than
in the human genome. Microbes in the gut help develop host immunity, di-
gest food, regulate gut endocrine function and neurological signaling, mod-
ify drug action and metabolism, eliminate toxins, and produce numerous
compounds that influence host health (Fan and Pedersen, 2021).

There are some mounting evidences that MPs/NPs are entering the
human gut on a regular basis via food and drinking water, manufacturing
wastes, or pollutants from plastic packaging (Dawson et al., 2018; Mason
et al., 2018; Pivokonsky et al., 2018; Hernandez et al., 2019; Compare
et al., 2012). Nanoplastics have the ability to penetrate the bloodstream
due to their small size they can be easily carried with the blood cells.
After ingestion, the intestinal epithelium is the first barrier to be exposed
to NPs. For the first time in 2018, a study from United European Gastroen-
terology (UEG) discovered MPs in human feces, raising concerns about the
potential harm of MPs to humans (Schwabl et al., 2019). This indicates that
takingMPs/NPs orally exposes these exogenous contaminants to the gastro-
intestinal tract (GI) tract directly. The intestinal barrier is necessary for in-
testinal homeostasis and metabolism to occur (König et al., 2016). Various
metabolic disorders are linked to damage in gut barrier integrity (Qiao
et al., 2021). Firmicutes and Bacteroidetes make up the majority of the
human gut microbiota, while Actinobacteria, Proteobacteria, Fusobacteria,
Verrucomicrobia, and Cyanobacteria accounts a tiny percentage (Abenavoli
et al., 2019). Due to its sensitivity, the gut microbiome has emerged as a
novel toxicological target for some environmental pollutants, such as plastic
pollution, and it has the potential to function as a medium to indirectly af-
fect the health of the host. Plastic particles and other pollutants enters the
gut region through intestinal epithelium barrier and disturbs the gut micro-
biota. It interacts with the microbes present in the gut. It results in disrup-
tion of the cell wall and releasing intracellular materials, thickening the
cell wall and releasing cytoplasm, releasing ions via ion channels, and dam-
aging DNA, therefore, results in the internalization of plastic particles into
the bacteria (Fig. 3) (Singh and Dubey, 2018). The body's metabolic pro-
cesses are controlled by the microbiome. Furthermore, numerous studies
have linked changes in microbiota composition with the metabolic
Fig. 3. Toxic impact of NP
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disorders such type II Diabetes, obesity, lipid disorders, and othermetabolic
dysfunctions (Pascale et al., 2018).

The gut microbiota in the feces and cecal contents of mice that were im-
pactedbyMPwere studied in an experiment, and the results revealed an ab-
normal gut microbiota composition of feces and cecal contents at the phyla
and genus levels. It was observed that polystyrene MP reduced the popula-
tion of Firmicutes considerably. Oscillospira, for example, is related to thin-
ness and healthy life, and it may also aid in the formation of secondary
bile acids (Konikoff and Gophna, 2016). Ruminococcus may play a role in
morbid obesity. As a result, findings revealed that MPs may cause gut mi-
crobial dysbiosis in mice. Similarly, when zebrafish were exposed to poly-
styrene MPs containing water at semi-static settings for 14 days in an
experiment, after 14 days, the abundance of Firmicutes in the groups had in-
creased dramatically. The abundance of γ-Proteobacteria, on the other hand,
fell dramatically in the gut. In addition, the polystyrene MPs-treated group
showed a considerable reduction in β-Proteobacteria. According to prior
research, it was stated that increased Firmicutes in the cecum improves
nutrient absorption and is associated with the development of obesity
(Ley et al., 2005).

5. Management of nanoplastics in the environment

The persistence of nanoplastics in the environment is gaining attention
these days, as the distribution of nanoplastics occurs through the aquatic
ecosystem and is transported further via terrestrial mobility. Because of
significant knowledge gaps, assessing the risk of NPs remains difficult.
However, the first step is to gather reliable data on NPs exposure inmarine,
freshwater, and terrestrial environments (Wagner and Reemtsma, 2019).
Therefore, addressing NP pollution requires to apply novel approaches
towards remediation technologies, formulation, and public awareness.
Despite the fact that little effort has been made in NP remediation, current
studies have proposed several possible directions (Wang et al., 2021).

Approaches such as bioremediation, microbial degradation of larger
plastic particles, membrane separation with a reactor, and photo-catalysis
along with the traditional procedures such as filtration, coagulation, centri-
fugation, flocculation (Devi et al., 2022; Zhou et al., 2022) is conducted
with several biotic as well as abiotic factors, such as assimilation, mineral-
ization, enzymaticmechanisms, substrates and co-substrates concentration,
temperature, pH, oxidative stress, etc. (Kumar and Hashmi, 2021).
s on gut microbiome.
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For example, one of the remediation technologies such as biodegrada-
tion involves three stages, including:

1. Depolarizing the plastic particles converts them intomonomers and olig-
omers. This process is achieved by extracellular enzymes (González-
Pleiter et al., 2019).

2. Assimilation of these monomers and oligomers occur when they enter
the host i.e., themicroorganism's cell and become a part of their biomass
(Iram et al., 2019).

3. Mineralization includes the oxidization of the assimilated matter, and
thus producing CO2 and H2O (Pathak, 2017).

Thus, nanoplastics pollution can be addressed by source reduction by
minimizing plastics incorporation in the economy, and appropriate waste
management (Sarkar et al., 2022). Appropriate development of waste
water treatment system, waste valorization, economically sound waste
management techniques and viable alternatives are all required to reduce
NPs in the environment.

6. Future perspective of nanoplastics toxicity

This paper gathers a comprehensive review on the origin and distribu-
tion of nanoplastics, general toxicity and eco-toxicity, and toxic conse-
quences of nanoplastics on Human health. Since many decades, plastic
wastes have become a concern for the environment. Many studies exam-
ined the toxic effects of nanoplastics on ecosystems (i.e., aquatic and terres-
trial). Several studies states the effects of additives, by-products and
functional groups of plastic particles, making these particles more detri-
mental. Many questions still remains unresolved. It is therefore important
to consider the stability of plastic particles when mixed with different con-
taminants in future studies because this can affect the way the particles in-
teract with organisms. In addition, it would be important to study the
concentration at which these NPs-contaminants adsorb and desorbed inside
the organism, leading to higher or lower levels of elimination of these con-
taminants into the environment. Due to the transformation of these plastic
particles and conversion of contaminants, this can alter the overall toxicity
of a mixture and affect its metabolism, which should be considered (Lin
et al., 2019; Spurgeon et al., 2020).

7. Conclusion

According to the findings mentioned, the plastic pollution has become a
major concern and challenge for the human society. This scenario of plastic
pollution showing much more deleterious effect towards environment and
human system owes to transformation of macroplastics to micron and nano
sized plastics molecules. Nanoplastics appears in the environment in form
of primary and secondary sources, possessing potentially upscaled ecotoxicity
due to its characteristic feature of size, shape, surface area to volume ratio
making it much more reactive and hazardous. The deleterious effect of
nanoplastics towards living system ranges from micron level to the human's
system where these nano sized plastics interfere and result in cytotoxicity
and other metabolic disturbances. Since, the toxicity of NPs for humans is
still unknown, a number of concerns need to be resolved, including the expo-
sure of NPs to human populations and the environment. Studies based on dif-
ferent types and shapes of NPs, time- and concentration-dependent manner
are exposed to human bodies, and the necessity for the advancement of
more sophisticated high-throughput analytical techniques to find these plas-
tic particles in the environment. In addition to overcome these obstacles,
efforts must be made to reduce plastic production and usage, as well as to
increase recycling and environmentally safe disposal of plastics.
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