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Regression trees, random forests, and generalized additive models 
(GAM) are statistical techniques often used in several disciplines, but 
rarely in wood technology. This study presented a novel approach to 
predicting the modulus of elasticity of Uruguayan pine timber by applying 
three statistical techniques and using visual parameters and non-
destructive testing. For this purpose, two sample groups of beams (50 
mm × 150 mm × 2800 mm) were selected from two commercial 
plantations, one comprised of 122 specimens from 14-year-old loblolly 
pine (Pinus taeda) and the second comprised of 111 specimens from 27-
year-old slash pine (P. elliottii). The visual parameters and dynamic 
modulus of elasticity for each specimen were obtained and associated 
with their experimental static bending stiffness. The number of annual 
rings per centimeter, twist, crook, and knot size were the most relevant 
visual variables for the modulus of elasticity prediction. The inclusion of 
the dynamic modulus of elasticity in the modeling improved the stiffness 
prediction by reducing the prediction error by 46% on average. The GAM 
had the best prediction, with a 10% prediction error, and explained 88% 
of the variability. These results suggested that GAM is a useful tool for 
stiffness prediction of Uruguayan pine timber. 
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INTRODUCTION 
 

The physical and mechanical properties of timber are usually predicted by visual 

parameters. Pith presence and location (Dahlen et al. 2014), knot size (Guillaumet et al. 

2007; Sotelo and Godina 2009; Vega et al. 2011), and growth ring width (Mascia and 

Cramer 2009; Baño et al. 2015; Fank et al. 2016), have been reported to be the main 

features that control the bending stiffness and strength of a piece of lumber. The number 

of annual rings per centimeter is an indicator of the growth rate of a tree, and it usually is 

associated with the juvenility or maturity of wood (e.g., fast growth rates produce high 

proportions of juvenile wood), which in turn is related to its mechanical properties. In 

line with this argument, it has been reported that juvenile wood in Uruguayan Pinus 

taeda and P. elliottii showed more detrimental influence on the stiffness than on the 

strength, with the former being the limiting property for class assignment according to the 

European strength class system (UNE-EN 384 2010) (Moya et al. 2015). The recent 

approval of the Uruguayan standard UNIT 1261 (UNIT 1261 2018) adopt the visual 

method for strength grading and provides the characteristics values of the main properties 
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for two structural grades. However, there is a practical difficulty in distinguishing 

between the two grades that could be improved by the inclusion of the ring width 

measurement. Visual grading allocates timber into groups that presumably have similar 

properties, particularly, bending strength and stiffness. The modulus of elasticity of 

structural lumber can be determined by destructive and/or non-destructive tests (NDTs). 

Over the past few years, extensive research has been conducted to estimate lumber’s 

modulus of elasticity through various NDTs, including ultrasonic-based, ray-based, and 

dynamic (vibrations and stress wave) methods (Lei et al. 2005), the last of these being 

highly correlated with the bending modulus of elasticity, strength, and density (Acuña et 

al. 2001; O’Neill 2006; Iñiguez 2007). Among the NDTs, the longitudinal stress wave 

method has the potential to be an efficient tool for quality control all through the 

industrial chain. Several authors have reported that NDTs combined with visual grading 

have improved the modulus of elasticity prediction. (García et al. 2007; Casado et al. 

2011).  

Simple or multiple regressions are the most frequently used models in wood 

technology to predict the modulus of elasticity (Guillaumet et al. 2007; Hermoso et al. 

2007; Vega et al. 2012). The statistical techniques regression trees (CART), random 

forests (RF), and generalized additive models (GAM) are powerful tools that have been 

widely applied in ecology (Yee and Mitchell 1991; Guisan et al. 2002; Austin 2007; 

Cutler et al. 2007; Meynard and Quinn 2007). The CART technique is used in ecology 

because of its ability for interpretation, high classification accuracy, and their potential to 

explain interactions between variables (Cutler et al. 2007). The fundamental idea of 

CART is to make a recursive binary partition of the independent variable values so that 

the values of the continuous response variable become increasingly homogeneous within 

the classes that form (Wilkinson 2004; Cutler et al. 2007). Such an approach can reveal 

the importance of the variable predictors and their interrelationships (James et al. 2013). 

As the name suggests, RF combines the predictions of several regression trees obtained 

from re-sampling on the database, randomly and with replacement, to ensure the same 

probability of choosing pieces each time. The RF technique does not have the instabilities 

of CART, but it has the disadvantage of not revealing the partition values of the predictor 

variables, as observed with CART (Breiman 2001). Besides, RF is robust for dealing with 

a database comprised of several explained variables and few observations (Cutler et al. 

2011; Degenhardt et al. 2017). Generalized additive models are extended models from 

multiple linear regressions that make possible the prediction of a response variable value 

from several independent variables. Such an approach works with nonlinear responses of 

the dependent variables that improve the characterization of the phenomenon (Yee and 

Mitchell 1991; James et al. 2013). Compared with multiple regressions, the CART, RF, 

and GAM techniques have the advantage of not needing verification about normality or 

homoscedasticity, and they allow for the combination of categorical and numerical 

variables (James et al. 2013). 

These statistical techniques have been employed for more than 30 years in several 

scientific fields. However, and probably due to unawareness of its potential or the habit 

of always employing the same techniques (e.g., multiple regressions), no literature 

reporting their use for timber grading is available. In this area, neural networks, a 

technique similar to CART and RF, called the attention of few researchers. A pioneering 

study on visual grading of P. nigra, compared the use of multiple regression techniques 

with neural networks and found that the latter improved the strength prediction precision 

by 15% (Mier et al. 2005). Recently, neural networks were used to predict the modulus of 
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elasticity of Abies pinsapo timber through density, width, thickness, moisture content, 

NDT, and visual grading; an R2 value of 0.75 was reported (Esteban et al. 2009, 2017). 

When comparing the CART and RF techniques with neural networks, the latter 

require a high number of observations to have a good prediction and a low number of 

independent variables to simplify the analysis. These facts were decisive for disregarding 

neural networks in the present study. On the other hand, CART, RF, and GAM make it 

possible to allocate timber in groups. Furthermore, using GAM it is possible to observe 

how the values of the visual parameters vary (qualitative and quantitative variables) to 

predict the modulus of elasticity.  

The aim of this study was to predict the modulus of elasticity of Uruguayan 

loblolly and slash pine timber by applying the CART, RF, and GAM techniques and 

using visual parameters and NDTs as input variables. 

 

 

EXPERIMENTAL 
 

Materials  
 The experimental materials for this study came from two commercial loblolly and 

slash pine (Pinus elliottii and P. taeda) plantations. With similar silvicultural practices 

and typical densities of plantation of 1000 to 1100 trees per ha, these species having 

similar physical and mechanical properties are usually planted and commercialized 

indistinctly mixed (Moya et al. 2013). Climatic and soil conditions lead to fast growth 

rates, which in turn produce high percentages (5 to 10%) of juvenile wood (Moya et al. 

2015).  

Both plantations have sawmills and are located in the northeast of Uruguay. 

Sample 1, from Tacuarembó province (32°06′53″ S, 55°45′20″ W), was comprised of 14-

year-old loblolly pine trees with pruning; and Sample 2, from Rivera province (30°54′09″ 

S, 55°33′02″ W), was comprised of 27-year-old slash pine trees with no pruning and no 

thinning. Approximately three hundred boards with dimensions of 60 mm- width, 150 

mm-depth, and 3300 mm-length were randomly selected from each sawmill production 

line, kiln-dried to a 12% MC, and planed to the final dimensions (50 mm × 150 mm × 

2800 mm). The cross section was selected based on being the most commonly used as 

structural component and due to limited availability in the industries. The beams were 

then wrapped with plastic film and transported to the Forest Products Department of the 

Laboratorio Tecnológico del Uruguay for further processing and analysis. 

 

Methods 
The study was performed in two phases: i) finding the most relevant variables to 

predict the modulus of elasticity from a small number of pieces that allows finding the 

largest number of explanatory variables without affecting the significance of the results; 

and, ii) proposing a model for stiffness prediction applying and validating the relevant 

variables determined in the first phase to a large number of pieces. 

 

Phase 1 

A total of 94 beams, 50 from Sample 1 and 44 from Sample 2, were evaluated. 

Typical visual parameters on each beam were measured according to UNE-EN 1310 

(1997), and they were referred to as the largest knot on the face (KFACE), largest knot on 

the edge (KEDGE), bow (BOW), crook (CRK), and twist (TWI). Because knots have 
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been reported to be one of the most important defects for reducing mechanical properties, 

further evaluation included additional variables, such as: i) the position of the largest knot 

in regards to the thirds of the specimen length (i.e., center or border, Fig. 1) for the face 

(PKFACE) and edge (PKEDGE); ii) largest area of the projection of all knots in a cross 

section divided by the cross sectional area (KAR1); iii) projection of the largest knot on 

the cross section in relation to the cross sectional area (KAR2); iv) projection of 

elongated knots on the cross section in relation to the cross sectional area (KAR3); and v) 

border area (BA), which was defined as one quarter of the face area located on the outer 

zones of the specimen face and expressed as a percentage of the cross sectional area. 

 

 
Fig. 1. Position and measurement of knots  

 

The number of annual rings per centimeter (NARPC), and growth ring orientation 

(GRO) in regards to the sawing pattern (i.e., tangential in flat-sawn, radial in quarter-

sawn, and semi in between flat- and quarter-sawn) were recorded. In addition, the 

presence of pith (PITH) was registered on the faces of each piece, as centered if it was 

contained in the central third of the piece width, or off center otherwise.  

 The above variables, including the Sample group (SAMPLE), were considered to 

be prediction variables and are listed in Table 1. 

 

Table 1. Predicting Variables and Adopted Values 

Variable Value 

Largest knot on face (KFACE) 1% to 100% 

Largest knot on edge (KEDGE) 1% to 100% 

Position of largest knot on face (PKFACE) 0 = NA, 1 = center, 2 = border 

Position of largest knot on edge (PKEDGE) 0 = NA, 1 = center, 2 = border 

Knot area by section area (KAR1) 1% to 100% 

Individual knot area by section area (KAR2) 1% to 100% 

Elongated knot area by section area 
(KAR3) 

1% to 100% 

Border area (BA) 1% to 100% 

Twist (TWI) [mm] 

Crook (CRK) [mm] 

Bow (BOW) [mm] 

Number of annual rings per centimeter 
(NARPC) 

0.1 – 3.0 

Pith (PITH) 0= absence, 1= centered, 2= not-centered 

Growth ring orientation (GRO) T = tangential, R = radial, S = in between T and R 

Sample (SAMPLE) 1 = 14-year-old P. taeda, 2 = 27-year-old P. elliottii  

Acronym in parentheses is the code for each variable; NA: not applicable because no knot was 
observed 
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Phase 2 

A total of 233 specimens, 122 from Sample 1 and 111 from Sample 2, which 

included those analyzed in Phase 1, were evaluated. In Phase 2, only the relevant 

variables determined in the previous phase were considered.  

It should be mentioned that although in Phase 2 the sample size increased, the 94 

specimens and the 15 initial variables evaluated in Phase 1 were sufficient to draw 

significant statistical data. 

 

Property determination 

In addition to the parameters listed in Table 1, the dynamic modulus of elasticity 

(Ed) of the beams was estimated by Non Destructive Techinques (NDT). The test was 

carried out using a Fakopp Microsecond Timer (Ágfalva, Hungary). The measurement 

instrument consisted of two piezoelectric-type transducers equipped with 60 mm long 

spikes. The spike probe fixes the transducer into the wood, one used for transmitting the 

signal and the other for receiving it. The stress wave was induced by a simple hammer 

impact, and then the stress wave transmission time was displayed on the timer in 

microseconds (Fig. 2). Three readings in longitudinal direction were performed and the 

average was recorded. The stress wave velocity (V) was obtained using Eq. 1, 

V (m/s)=L/t x1000000  (1) 

where L is the length of the beam (m) and t is the average transit time of the pulse from 

the transmitting transducer to the receiving transducer (s).  

The dynamic modulus of elasticity (Ed) was then calculated with Eq. 2, 

Ed (MPa) = ρ × V2  (2) 

where ρ is the density (kg/m3) of the beams determined by the actual volume and weight 

at the time of testing. 

 

 
Fig. 2. Dynamic NDT set up 

  
The beams were edgewise tested with four-point bending (Fig. 3) using a 

universal testing machine (Minebea 250 kN, Tokyo, Japan) to determine the global 

modulus of elasticity (E0) according to Eq. 3 (UNE-EN 408 2011), 

𝐸0 
(MPa)  =  

3𝑎𝐿2 − 4𝑎3

2𝑏ℎ3(2𝑤2 − 𝑤1
𝐹2 − 𝐹1

 − 
6𝑎

5𝐺𝑏ℎ
)
  (3) 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Cardoso et al. (2019). “Bending stiffness of loblolly,” BioResources 14(1), 755-768.  760 

where a is the distance between the nearest load point and point of support (mm); L is the 

bending span (mm); b and h are the width and height (mm), respectively; G is the shear 

modulus of elasticity, computed as E0/16 (UNE-EN 384 2010); F2 - F1 is the load 

increment on the straight line position of the load deformation regression curve between 

20% and 30% of the maximum load (N); and w2 - w1 is the deformation increment 

corresponding to F2 - F1 (mm). 
 

 
 

Fig. 3. Static four-point bending test set up 
 

The ρ and MC of each specimen were determined according to Eqs. 4 and 5, 

respectively (UNE-EN 408 2011), 

𝜌 (g cm3⁄ )  =  
𝑚

𝑣𝑜𝑙
  (4) 

𝑀𝐶 (%) =  
𝑚initial − 𝑚0%

𝑚0%
  (5) 

where m is the weight (g) and vol is the volume (cm3), both at the test MC; minitial is the 

weight of the specimen at the test time (g); and m0% is the oven-dry weight (g). 

The E0 and ρ were adjusted to a 12% MC (UNE-EN 384 2010 and UNE EN 408 

2011), and Ed  by Eq. 6: 

 

𝐸𝑑  (12%)  =  𝐸𝑑  +  𝐸𝑑 ∗ (
12−𝑀𝐶

100
)                                                                      (6) 

 

Statistical analysis 

The Spearman correlation coefficient was first used to describe the association of 

each individual variable with the modulus of elasticity, and then the non-parametric 

Wilcoxon-Mann-Whitney test was applied to detect stiffness differences between groups 

comprised of grading variables. The CART, RF, and GAM techniques were applied using 

the R software (R.3.4.4, R Core Team Company, Vienna, Austria) (R Core Team 2018) 

to rank and select variables that would better predict the modulus of elasticity. For each 

technique, two different models were run, one with all of the variables listed in Table 1 

and a second with all of the variables and Ed. 

The models were compared using the percentages of explained variability (EV) 

and prediction error (PE). The former indicates the variability percentage among the 

observations explained by the model and the second shows the error of the stiffness 

prediction if additional specimens were included in the model. For this purpose, two-

thirds of the data set was randomly sampled 50 times as a training sample to obtain 

prediction models, and the remaining one-third of the data was used to test the prediction 
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ability of each model. For each prediction, the mean square prediction error was 

calculated as the square of the quadratic difference between the real and predicted 

stiffness values. The mean of these errors as a percentage of the mean stiffness (E0,mean) 

was defined as the PE. 

 

 

RESULTS AND DISCUSSION 
 

Influence of Each Individual Variable on the Modulus of Elasticity 
Annual rings 

A positive correlation between the E0 and NARPC was observed (correlation 

coefficient, r = 0.56; p < 0.05). The r was higher compared with those of the other visual 

variables (data not shown). It is widely accepted that fast growing trees produce high 

proportions of juvenile wood with large cell cavities, thin cell walls, low densities, and 

high fiber angles, which in turn, decrease the mechanical properties (Green et al. 1999). 

In coniferous species, each individual annual ring represents one growth year (Miller 

1999), and thus a large NARPC reduces the proportion of juvenile wood to mature wood, 

which improves the mechanical properties. In line with the findings of this study, 

Haselein et al. (2000) studied 30-year-old Brazilian P. elliottii and reported an R2 of 0.78, 

using an adjusted linear multiple regression model to estimate the E0 considering the 

percentage of mature wood and number of annual rings per inch. Mascia and Cramer 

(2009) reported an association between the E0 and number of annual rings per inch, based 

on the R2 of a quadratic regression model (0.48). Conversely, Fernández-Golfín and Diéz 

(1994) evaluated the relationship between the E0 and width of annual rings on 25-year-

old trees from three Spanish coniferous species and obtained R2 values of 0.07 for P. 

pinaster and P. sylvestris, and a R2 of 0.14 for P. radiata. In a subsequent study on P. 

radiata and P. pinaster, Fenández-Golfín et al. (1997) reported an R2 of 0.35 between the 

E0 and annual ring width, and it was concluded from both studies that it was not possible 

to predict the modulus of elasticity from the annual ring width. 

 

Knots 

In Phase 1, no association between the E0 and variables related to the knot area, 

i.e., KAR1, KAR2, KAR3, and BA, was found (p > 0.05). These results contradicted 

those of Sotelo and Godina (2009), who reported an association between the E0 and 

projected knot area, based on an R2 of 0.39 from a simple regression model. Additionally, 

Gaunt (2004) in a study on Douglas fir (Pseudotsuga menziesii) and radiata pine (Pinus 

radiata), obtained a negative association between stiffness and projected knot area, with 

an r value of -0.39. 

The stiffness was not associated (p > 0.05) with either the PKFACE or PKEDGE. 

Variables related to the knot diameter had a significant correlation with the E0. In Phase 

2, the estimated r for the KFACE and E0 was -0.23 (p < 0.05), which was similar to that 

obtained in Phase 1. The mechanical properties decreased because the knot size was 

attributed to the deviation of wood fiber around the knot (Green et al. 1999; Kretschmann 

and Green 1999; Guillaumet et al. 2008; Fank et al. 2016). In pine timber, fiber around 

the knot frequently formed nearly 90° angles with respect to the longitudinal axis of the 

piece. In this analysis, no correlation between the KEDGE and E0 (p = 0.15) was 

detected. Vega et al. (2011) studied Castanea sativa Mill. and observed r values of -0.24 

and -0.18 between the E0 and the KFACE and KEDGE, respectively. 
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Pith 

The E0,mean of the Sample 1 specimens (5558 MPa) was significantly lower (p < 

0.05) than for the Sample 2 specimens (6872 MPa), which was explained by the presence 

of juvenile wood that usually forms between 5 years or 10 years to 20 years in coniferous 

trees (Kretschmann and Bendtsen 1992; Green et al. 1999; Tuset and Durán 2008). In this 

study, the presence of pith was an indicator of juvenile wood, where 104 specimens from 

Sample 1 and 56 from Sample 2 contained pith. In both phases, significant differences 

between the stiffness of the beams with and without pith were observed (p < 0.05), yet 

the pith position within the beam face did not have a significant effect (p > 0.05). The 

specimens with pith showed 21% lower E0,mean values than those without pith. This result 

was consistent with those of Dahlen et al. (2014) and Fank et al. (2016), who found 

differences of 35% and 43%, respectively, for the E0,mean in boards with pith versus those 

without pith. 

 

Warp 

In both phases, the stiffness was significantly correlated with the TWI and CRK, 

with r values of -0.41 (p < 0.05) and -0.20 (p < 0.05), respectively. No correlation 

between the E0 and BOW (p = 0.10) was detected. It is worth noting that these 

deformations were included in the analysis for standardization purposes (i.e., to segregate 

strength classes). Warp is generally related to the transformation processes (particularly 

with drying) in the industry, and not with the mechanical properties of wood. The first 

findings relating TWI and CRK with E0, hinders to discriminate the effect of the intrinsic 

variables of the wood on the mechanical properties, and the effect of the variables 

generated by the transformation process. 

  

Dynamic modulus of elasticity 

In both phases, an r value of 0.92 (p < 0.05) between the bending stiffness and Ed 

was observed (Fig. 4). Similarly, Acuña et al. (2001) reported an R2 of 0.71 for a linear 

multiple regression model that estimated the E0 by considering the Ed and density of 

Spanish P. sylvestris. Iñiguez (2007) reported an R2 of 0.83 for a linear regression 

between the E0 and Ed for Spanish P. nigra. 
 

E
0
 (

M
P

a
) 

 

 Ed (MPa) 
 

Fig. 4. Scatterplot relating the E0 and Ed 
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The KFACE, TWI, CRK, PITH, NARPC, SAMPLE, GRO, and Ed were the 

variables that significantly correlated with the E0. The KEDGE did not significantly 

correlate with the E0, but was included in the following multivariate analysis because 

most authors in the literature reported a strong association between the KEDGE and E0 

(Vega et al. 2011; Baño et al. 2015). 

 

Multivariate Analysis for the Modulus of Elasticity Prediction 
Six models were obtained using the CART, RF, and GAM techniques. Table 2 

summarizes the relevant variables for the E0 predictions from the CART, RF, and GAM 

techniques. 

 

Table 2. Models, Relevant Variables, and Results for the Modulus of Elasticity 
Prediction Obtained by the CART, RF, and GAM Techniques 

Technique  
Model 

Number 
Relevant Variables 

EVa 
(%) 

PEb 

(%) 

CART 
1 NARPC + TWI 42 27 

2 Ed + NARPC 83 14 

RF 
3 NARPC + TWI 45 21 

4 Ed + NARPC 81 13 

GAM  
5 NARPC + TWI + CRK + KEDGE + KFACE 54 21 

6 Ed + KEDGE + KFACE + CRK 88 10 

 

When Ed was not included in the model (models 1, 3, and 5), the NARPC and 

TWI were found to be relevant variables for the E0 prediction for each of the three 

techniques, which was explained by the association of these two variables with the 

presence of juvenile wood and the reduced effect on the stiffness. A low NARPC usually 

indicates fast growing rates in a tree. That is the case of Uruguayan fast growing 

plantations, in which trees are frequently harvested before attaining maturity, showing 

high proportions of juvenile wood and leading to subsequent warping of lumber (Baño et 

al. 2015; Moya et al. 2015). In addition to the NARPC and TWI, the GAM found that the 

CRK, KEDGE, and KFACE were relevant variables for the E0 prediction. It is worth 

noting that the influence of the KEDGE on the E0 was detected by the GAM possibly 

because it existed in narrow ranges (e.g., between 70% and 100% for KEDGE), while no 

association between the E0 and whole KEDGE range for the correlation analysis was 

observed. 

Among the models that excluded Ed, the GAM model (model 5) presented the 

highest EV of the E0 (54%) and lowest PE (21%). Similar results were found by Hermoso 

et al. (2007), who reported an R2 of 41.5% to explain the variability in the bending 

stiffness from the density and knots of Spanish radiata pine. 

In addition to the differences in the significant variables observed in each model 

(Table 2), the inclusion of the Ed as a predicting variable improved the PE by 48%, 38%, 

and 52% in the CART, RF, and GAM, respectively. Moreover, the percentages of EV of 

the models that included the Ed (model 2, 4, and 6) were higher than those from the 

models without the Ed (model 1, 3, and 5). Similar conclusions regarding the combination 

of visual parameters with NDTs for the stiffness prediction were reported by several 

authors (Ceccotti and Togni 1996; García et al. 2007; Casado et al. 2011). 

The Ed was the most relevant variable detected by the three techniques, as shown 

by previous results. The NARPC was found to be relevant by the CART and RF, but not 
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by the GAM, when the Ed was included as an explanatory variable. The NARPC was co-

linear with the Ed (r = 0.52; p < 0.05) and therefore, was not detected as a relevant 

variable by the GAM, a technique that has been reported to be sensitive to the co-linearity 

of prediction variables (Yee and Mitchell 1991). 

The GAM modeling resulted in the largest number of significant variables (p < 

0.05). Furthermore, model 6 showed the highest percentage of EV and lowest PE (Table 

2). The EV and PE found for model 6 suggested that this model is more accurate for 

stiffness prediction compared with those that included NDT-employed regression 

techniques (García et al. 2007; Casado et al. 2011) or applied neural network modeling 

(Mier et al. 2005). Therefore, GAM modeling provides a useful tool to improve the 

prediction of Uruguayan pine timber stiffness, when using visual parameters and the Ed 

as input variables. 

 

 

CONCLUSIONS 
 

 A novel approach involving three statistical techniques (CART, RF, and GAM) 

was employed to select and rank the most relevant explanatory variables for stiffness 

prediction of Uruguayan loblolly and slash pine timber.   

 The NARPC, CRK, KFACE, and KEDGE were found to be the significant 

visual variables associated with the static bending stiffness, being the later significantly 

correlated to the dynamic modulus of elasticity. Besides, in spite of finding significant 

correlation between TWIST and E0, the former is usually related to the drying process, 

and not to the mechanical properties of wood.   

 The sample source, pith, and annual ring orientation were individually 

associated with the bending stiffness, but they were not relevant in the multivariate 

analysis. Furthermore, inclusion of the dynamic modulus of elasticity in the modeling 

improved the stiffness prediction by reducing the prediction error by 46% on average. 

 With the exception of the dynamic modulus of elasticity, none of the visual 

variables individually explained the behavior of the longitudinal modulus of elasticity. 

On the other hand, results of the models 1, 3 and 5 that included a series of relevant 

visual variables indicated that it is possible to predict the longitudinal modulus of 

elasticity with an acceptable prediction error of 23% on average.   

 The GAM with visual parameters and the dynamic modulus of elasticity as input 

variables was found to be the best model to predict the bending stiffness. 
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