

FUNDACIÓN LATU

Efecto del procesamiento wet-mix en las propiedades fisicoquímicas de fórmulas infantiles en polvo

Mariana Rodríguez Arzuaga, María C. Añón, Analía G. Abraham y Lilia Ahrné

Declaración Organización Mundial de la Salud 15/1/2011:

"La OMS recomienda a todas las madres la lactancia materna exclusiva durante los primeros seis meses, con el fin de ofrecer a sus hijos un crecimiento, desarrollo y salud óptimos."

		Caseína/Suero = 80/20 β-Lg > 50 %	Caseína/Suero = 40/60 β-Lg: ausente
	Componente	611110	Lech
	Proteína (g/100 mL)	3,4	1,0
	Grasa (g/100 mL)	3,6	3,6
	Lactosa (g/100 mL)	4,7	7,2
	Oligosacáridos (g/100 mL)	Trazas	1,3
•	Sólidos totales (g/100 mL)	12,7	12,2
	5 · 5 · 1 /2045) 0	1 /2006)	

Fuente: Fox et al. (2015); Coppa et al. (2006).

Fórmulas infantiles

Clasificación según:

Edad del bebé

0 a 6 meses

Origen ingredientes

Leche de vaca

Leches especiales

Presentación

En polvo

Producción de fórmulas en polvo

Rehidratación y dispersión Tratamiento térmico

Homogeneización

Evaporación

Secado spray

Objetivo

Investigar el efecto del nivel de sólidos totales (50 o 60 %, m/m) y la temperatura de pasteurización (75 o 100°C) de la mezcla húmeda en las propiedades fisicoquímicas de fórmulas infantiles en polvo.

Fórmula modelo

ST= 50 %
ST= 60 %

Rehidratación y dispersión

75 ºC x 18 s
100 ºC x 18 s

Batch: 15 Kg T= 65 °C pH= 6,7 t= 15 min Vacío

Homogeneización

1

Secado spray

T~ 65 ºC

P_{1era etapa}= 13 MPa P_{2da etapa}= 3 MPa

T_{alim}= 65 °C T_{entrada aire}= 180 °C T_{salida aire}= 85 °C

Ingrediente	50 %	60 %
Agua (kg)	7,50	6,00
Lactosa (kg)	3,42	4,10
LDP-LH (kg)	1,14	1,37
WPI (kg)	0,45	0,54
Aceite girasol (kg)	2,01	2,41
GOS (kg)	0,44	0,53
FOS (kg)	0,034	0,041
ST (%, m/m)	48,9±0,7	58,3±1,1

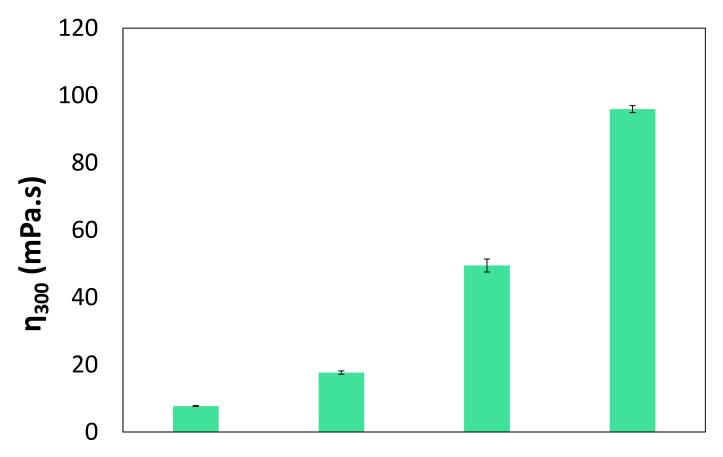
Reglamento de la Comisión Delegada 2016/127. Comisión Europea.

Diseño experimental

Condición	ST (%)	Temp. TT (ºC)
50%-75°C	50	75
50%-100°C	50	100
60%-75°C	60	75
60%-100ºC	60	100

Cada condición se elaboró por duplicado. Y cada producción se realizó en días independientes.

Viscosidad


- Viscosidad de mezcla húmeda en alimentación del secador spray
- Geometría: cilindros concéntricos
- T= 65 °C
- Velocidad de corte: $0-300 \, s^{-1}$ en 5 min, $300 \, s^{-1}$ por 2 min y de $300 \, s^{-1}$ a 0 en 5 min.
- Viscosidad aparente a 300 s⁻¹.

Viscosidad

50%-75°C 50%-100°C 60%-75°C 60%-100°C

Actividad de agua y composición

En las fórmulas en polvo obtenidas se determinó:

- a_w a 20°C en Aqualab Series 3 TE.
- Composición (humedad, cenizas, proteína, materia grasa, lactosa y oligosacáridos).

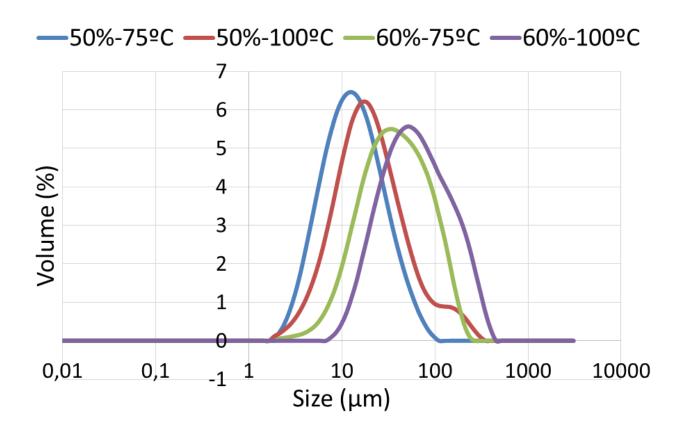
Actividad de agua y composición

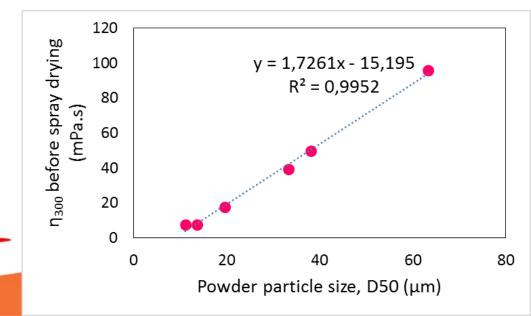
Condición	a _w	Humedad (%)	Proteína (%)	Materia grasa (%)	Lactosa (%)	Oligosacáridos (%)	Cenizas (%)
50%-75ºC	0,09 ± 0,00	0,85 ± 0,14	11,5 ± 0,40	25,8 ± 0,49	56,8 ± 1,34	3,38 ± 1,11	1,65 ± 0,01
50%-100ºC	0,11 ± 0,06	1,31 ± 0,66	11,3 ± 0,13	24,7 ± 3,11	57,0 ± 2,55	4,01 ± 0,19	1,65 ± 0,03
60%-75ºC	0,10 ± 0,03	0,88 ± 0,14	11,6 ± 0,37	28,5 ± 1,39	53,4 ± 1,34	3,94 ± 0,34	1,73 ± 0,06
60%-100ºC	0,13 ± 0,03	1,20 ± 0,16	11,2 ± 0,21	27,7 ± 0,42	54,0 ± 0,42	4,30 ± 0,04	1,61 ± 0,00

No se obtuvieron diferencias significativas entre condiciones (P> 0,05).

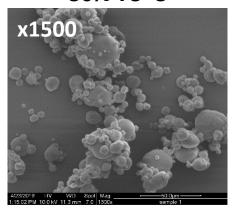
Todas cumplieron la reglamentación europea.

Distribución de tamaño de partícula


- Mastersizer 3000 con unidad de dispersión de polvo seco.
- Índice de refracción= 1,46.
- Índice de absorción= 0,01.

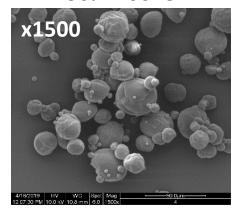


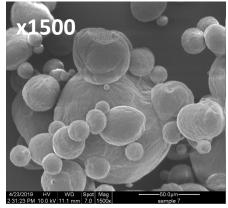
Distribución de tamaño de partícula


Condición	D _{4,3} (μm)
50%-75ºC	17 ± 2
50%-100ºC	30 ± 3
60%-75°C	55 ± 1
60%-100°C	94 ± 3



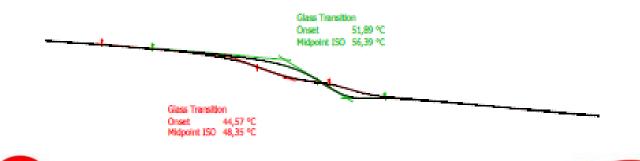
Distribución de tamaño de partícula


50%-75°C


60%-75°C

50%-100ºC

60%-100°C



Temperatura de transición vítrea

- DSC Mettler Toledo Star^e System
- $a_w = 0.24$.
- Rampa: 0-100°C a 5°C/min, 100-0°C a 10°C/min, 0-140°C a 5°C/min.
- $T_{g \text{ onset}}$ y $T_{g \text{ mid}}$ se obtuvieron en segundo calentamiento.

Temperatura de transición vítrea

Condición	Tg onset (ºC)	Tg mid (ºC)
50%-75°C	46,4 ± 1,4 ^a	51,0 ± 1,4 ^a
50%-100°C	50,9 ± 1,4 ^b	55,6 ± 1,1 ^b
60%- 7 5°C	50,2 ± 1,1 ^b	54,4 ± 0,8 ^{ab}
60%-100°C	51,0 ± 0,2 ^b	55,0 ± 0,3 ^{ab}

LACTOSA

Estado vítreo

Estado viscoelástico

Mayor movilidad molecular

Menor estabilidad

Pegajosidad, caking, cristalización

Conclusiones

Tanto el incremento de ST como de Tpast aumentaron viscosidad de wet-mix en alimentación del secador spray.

El aumento de la viscosidad se tradujo en un aumento del tamaño de partícula del polvo, con implicancias en propiedades tecno-funcionales como la rehidratación.

Composición y aw no variaron con ST y Tpast de wet-mix.

Tg menor 50%-75°C, podría implicar menor estabilidad al almacenamiento.

Conclusiones

Las variables del proceso wet-mix, tales como ST y Tpast, afectan las características fisicoquímicas de las FI y deben seleccionarse adecuadamente dado su impacto económico, nutricional y funcional.

Muchas gracias

marodrig@latitud.org.uy

