

Heat induced conformational changes of whey proteins in model infant formulae: effect of casein and inulin

Mariana RODRÍGUEZ-ARZUAGA^{*1,2}, María C. AÑÓN², Analía G. ABRAHAM² (1) Latitud, LATU Foundation, Uruguay. (2) CIDCA (National University of La Plata, CONICET, CIC-Bs.As.), Argentina.

Introduction

Infant milk formula (IMF) and cow milk have compositional differences, such as whey protein-to-casein and protein-to-lactose ratios and presence of components with prebiotic function. Whey proteins (WP) are sensitive to heat-induced denaturation and aggregation, which could have technofunctional and nutritional implications. This study investigated how the presence of casein and inulin, at ratios relevant to IMF processing, affect the heat-induced conformational changes of WP.

Materials and methods

Results

EFFECT ON DENATURATION

 Table 2.
 Denaturation
 temperature (Td) of the unheated model systems.

Model systems	Td (ºC)	
WP	74.6 ± 0.2 ^a	
WP-CAS	74.8 ± 0.3 ^{ab}	
WP-INUL	75.7 ± 0.4 ^c	
WP-CAS-INUL	75.4 ± 0.2 ^{bc}	

MODEL SYSTEMS were prepared as aqueous dispersions of WPI (WP), calcium caseinate (CAS) and/or inulin (INUL), at the levels presented in Table 1.

 Table 1. Model systems composition.

Model systems	WP (%, w/w)	CAS (%, w/w)	INUL (%, w/w)
WP	1.8	0.0	0.0
WP-CAS	1.8	1.2	0.0
WP-INUL	1.8	0.0	1.5
WP-CAS-INUL	1.8	1.2	1.5

- HEAT TREATMENTS (HT) were applied to all model systems in a temperature-controlled water bath at 66, 70 and 75 °C for 30 min. Heated and unheated (UH) systems were freeze-dried for further analyses.
- TEMPERATURE (Td) AND DEGREE OF DENATURATION were determined by DSC in the freeze-dried systems reconstituted in distilled water to 30 % TS. Td was defined as the minimum of the endotherm peak and degree of denaturation as the % of the area of the endotherm obtained for the same model system but UH.
- CHANGES IN THE SECONDARY STRUCTURE were evaluated by ATR-FTIR in the amida I region (1700-1600 cm^{-1}).
- SDS-PAGE under reducing and non-reducing conditions were performed for all samples.

Fig. 1. Degree of denaturation of model systems.

EFFECT ON AGGREGATION

WP: under non-reducing conditions, SDS-PAGE showed a band of high MW that decreased with temperature due to aggregation. Particle size increased from 258 (UH) to 932 nm at 75°C (Fig. 2). FTIR spectra showed higher proportions of intermolecular β -sheet structures.

EFFECT OF CAS: Particle size was constant with HT and less intermolecular β -sheets were obtained by FTIR.

EFFECT OF INUL: did not prevent increase in particle size (Fig. 2).

Degree of denaturation (%)

─── UH ─●─ 66 °C ─▲─ 70 °C ─▼─ 75 °C

- PARTICLE SIZE DISTRIBUTIONS were obtained by means of dynamic light scattering in the freeze-dried samples reconstituted at 1 % (w/v) in simulated milk ultrafiltrate (SMUF).
- PROTEIN SOLUBILITY (%, w/w) was calculated in the model systems before freeze-drying as: (soluble protein/total protein)x100. Soluble protein was determined by Bradford method in the supernatant obtained after centrifugation at 20.000 × g for 20 min at 25 °C. Total protein in the model systems was determined by Kjeldahl.

Conclusions

- HT induced denaturation, aggregation and loss of solubility of WP.
- Before HT, CAS addition reduced protein solubility but did not modify Td. WP-CAS solubility increased with HT. Particle size and FTIR results suggested that CAS inhibited WP heat-induced aggregation.
- INUL did not affect aggregation or solubility but increased Td.

- Fig. 2. Particle size distribution of model systems.
- **EFFECT ON PROTEIN SOLUBILITY**

Fig. 3. Protein solubility of model systems.