ARSENIC SPECIATION IN RICE:

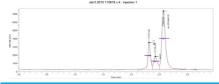
Exploring a method faster than FDA.

Development and validation.

- issa Verger,1 Lorena D. Tchorbadjian,2 Elena Darré,1° Raquel Huertas1. Departamento de Espectrometría Atómica de Alimentos y Medio Ambiente. Laboratorio Tecnológico del Uruguay (LATU), Av. Italia 6201, Montevideo, Uruguay, www.latu.org.uy. 2 Latitud-Fundación LATU, Av.ltalia 6201-Edificio Los Abetos, Montevideo, Uruguay, www.latitud.org.uy.

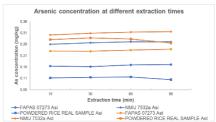
INTRODUCTION

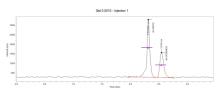
Due to the different toxicity of arsenic species (arsenite- As+3 > arsenate As+5 > dimethylarsenic acid- DMA> monomethylarsenic acid -MMA) and the prevalence of arsenic in rice crops, knowledge about the speciation of arsenic in rice is a mandatory requirement so as to offer an innocuous product to the population.

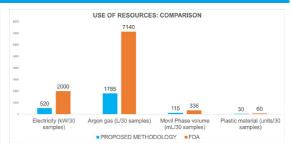

Since HPLC-ICP-MS is both a time consuming and expensive technique which requires trained analysts, arsenic speciation in rice continues to be a challenge in the laboratories of Latin America. Due to the above, obtaining faster, cheaper and accurate analytical methods is always a concern in our daily work. In that search we optimized speciation of arsenic in rice starting with FDA 4.11 method[1] and ended up obtaining an analytical method at least three times faster.

EXTRACTION OF ARSENIC SPECIES

Development of the extraction process:


	FDA method [1]	Proposed Method ^[2]	Obtained Method
Sample taken	1g	0.5 g	1 g
Extracting solvent	10 mL HNO₃ 0.28 M	2 mL de H ₂ O ₂ 0.20M + HNO ₃ 0.10 M	10 mL HNO₃ 0.28 M
Temperature	95 °C	100 ºC	95 ºC
Heating time	90'	15'	15'
Final volume	16.7 mL con H₂O and dilution 1/3 up to pH 6-8,5.	10 mL de H₂O	16.7 mL con H ₂ O ₂ 1M


Importance of H₂O₂ for the oxidation of As⁺³



DETERMINATION OF As SPECIES BY HPLC-ICPMS

	FDA 4.11:2012 [1]	PROPOSED METHODOLOGY [2]	
Column	Hamilton PRP X-100, 5µm, 4.6x150 mm	GEMINI® 5 μm, C18,110 Å 250 x 4.6 mm	
Movil Phase	(NH ₄) ₂ HPO ₄ 10 mM, pH (8.25 ± 0.05).	(NH ₄) ₂ HPO ₄ 1 mM:MeOH 0.05%, pH 2	
Calibration curve:	Movil phase	HNO ₃ 0,28 M H ₂ O ₂ 1 M	
Flow rate:	0.8 mL/min	Gradient flow: 2 min a 1.2 mL/ min; 1.5 min a 0.95 mL/min	
Inyection volume:	50 μL	20 µL	
Temperature	Ambient	35 °C	
Runtime	14 min	3.5 min	
Retention time	As+3- 2,3; DMA-2,9; MMA- 3,5; As+5- 8,5	As _i -2,3; As _o - 2,5 (Rs: 1,54)	

USE OF RESOURCES

RESULTS AND CONCLUSIONS

Accuracy and Precission						
Material	Specie	Declared Value (µg/kg)		Recovery (%) (x ± 2 RSD)	CV (%)	
Nist 1568b- Rice Flour	Asi	92± 10	9	97,0 ± 14,1	7,1	
	Ast	285±14	,	92,7 ± 9,9	4,9	
Fapas 07273 Powdered Rice	Asi	162±5,2		100,4 ± 12,2	6,1	
	Ast	220±4,6	15	106,8 ± 12,0	6	
Spiked real sample	Asi	100		95,4± 19.5	9,7	
	Ast	200	6	102,9± 9.8	4,9	
Spiked real sample	Asi	200		96,0± 17,2	8,6	
	Ast	400	6	104,3± 7,1	3,6	

Detection Limit (DL)- Quantification limit (QL)			Uncertainty (k=2)		
Matrix	Calculated DL (µg/kg)	QL (µg/kg)	Level (µg/kg)		U As _t (%)
Powdered Rice (n:5)	As _i : 1,6	Asi: 4,8	50	21,7	23,4
	As _i : 3,5	Asi: 10,5	100	15.0	16,8
FAPAS 07289 Powdered Rice (n:6)	As _o : 0,60	As _o : 1,8	300	13,2	15,7
Spiked blanc (n:7)	As _o : 2,4e-05	Aso: 7,5e-05	Linearity: As _c 0,30-60 μg/L; As _c 0,30-20 μg/L.		

- A faster, cheaper, and more environmentally efficient method was obtained.
- Validation parameters show a better performance than FDA method in the determination of As, and As, in agreement with ISO 17025:2017.

REFERENCES

ACKNOWLEDGMENT

[1] Kubachka K., Shockey N., Hanley T., Conklin S., Heitkemper D., 4.11, FDA, (2012), available from: https://www.fda.gov/media/95197/download.
[2] Narukawa T., Chiba K., Sinaviwat S., Feldmann J.,(2017), Journal of Chromatography A, 1479, pag. 129-136.

This work was funded by Fondo Sectorial Innovagro-Inocuidad- FSA_I_2017_1_141060. Special thanks to the team of the Atomic Spectrometry Department for the support and a in the development of this work.