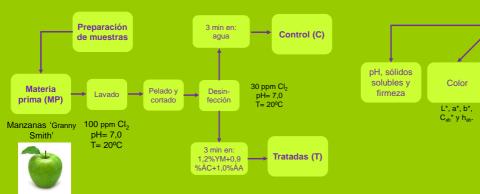


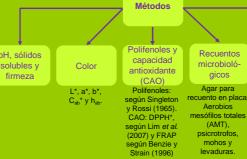
Efecto del mínimo procesamiento y tratamiento con yerba mate sobre potencial saludable v calidad sensorial de manzanas frescas cortadas

www.latu.org.uy

RODRÍGUEZ ARZUAGA, Mariana^{1,2}; SABBAG, Nora¹; SALSI, María S.¹ y PIAGENTINI Andrea M.¹

Instituto de Tecnología de Alimentos (Facultad de Ingeniería Química – U.N.L.). Santa Fe, Argentina
Laboratorio Tecnológico del Uruguay (LATU). Montevideo, Uruguay.


INTRODUCCIÓN


Los productos mínimamente procesados pierden calidad debido al deterioro microbiológico y a cambios fisiológicos y bioquímicos que pueden resultar en la degradación del color, la textura y el flavor. El pardeamiento imparte características sensoriales que desestimulan al consumidor a comprar frutas frescas cortadas y es una de las principales limitantes de su vida útil. Se han propuesto muchos tratamientos para evitar o enlentecer el desarrollo de pardeamiento y así prolongar la vida de estante de estos productos, sin embargo la mayoría de estos agentes químicos tienen eficiencia variable y pueden generar off-flavors. El alto contenido de compuestos fenólicos en el mate es el responsable de sus notables propiedades antioxidantes y lo hacen un excelente candidato a antioxidante natural a aplicar a alimentos de la IV gama.

OBJETIVOS

Estudiar el efecto del mínimo procesamiento y del tratamiento químico con una solución compuesta por: 0,9% ácido cítrico (ÁC), 1,0% ácido ascórbico (ÁA) y 1,2% yerba mate (YM), sobre las características bioactivas. fisicoquímicas. microbiológicas y sensoriales de manzanas 'Granny Smith'.

MATERIALES Y MÉTODOS

modificado

Evaluación sensorial Panel entrenado evaluó: apariencia

general, pardeamiento, *flavor* característico, gusto ácido, crujencia, jugosidad, offflavors y off-odors. Escala: no

estructurada de 10

RESULTADOS Y DISCUSIÓN

Color

T presentó los mayores valores de luminosidad (L*) y ángulo de tono $(h_{ab}^{'})$ y el menor valor de a * (tabla 1). Estos resultados pueden atribuirse a que el tratamiento químico aplicado inhibió o retardó el pardeamiento enzimático.

Muestra	L*	a*	b*	C _{ab} *	h _{ab}
MP	76,4±1,0 a	-0,4±0,7 b	17,7±1,0 b	17,7±1,0 b	91,2±2,4 a
С	75,9±2,0 a	-0,2±0,5 b	16,7±1,4 a,b	16,7±1,4 a,b	90,8±1,7 a
Т	77,8±1,1 b	-1,3±0,4 a	16,3±1,7 a	16,3±1,7 a	94,7±0,8 b

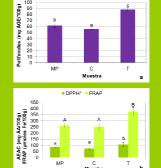
Tabla 1. Parámetros instrumentales de color. Letras distintas entre filas indican

Recuentos microbiológicos

Muestra	AMT (log UFC/g)	Psicrotrofos (log UFC/g)	Mohos (log UFC/g)	Levaduras (log UFC/g)
MP	1,6±0,1 b	1,4±0,1 a	1,4±0,2 a	1,2±0,2 a
С	1,0±0,1 a	1,0±0,2 a	1,1±0,2 a	1,0±0,1 a
Т	1,7±0,2 b	1,1±0,2 a	1,0±0,1 a	1,0±0,2 a

Tabla 2. Recuentos microbiológicos. Letras distintas entre filas indican diferentes significativa (p<0,05).

pH, sólidos solubles v firmeza


El mínimo procesamiento no tuvo efecto sobre el pH ni la firmeza de las muestras. El tratamiento químico (TQ) generó un descenso significativo del pH y la firmeza de respecto de MP. C presentó el menor contenido de sólidos solubles, seguido por T.

Polifenoles y capacidad antioxidante

La YM es rica en polifenoles lo que se traduce en un incremento de estos compuestos en las manzanas tratadas (figura 1.a). El descenso de polifenoles en C puede explicarse por una pérdida durante el lavado con agua. T presentó mayor actividad antioxidante que MP y C (figura 1.b), debido tanto a los polifenoles aportados por la YM como al ÁA presente en la solución.

Atributos sensoriales

astringencia $(1,5\pm0,9)$, crujencia $(8,0\pm0,8)$ y jugosidad (7,6±0,9) de las muestras

capacidad antioxidante por los métodos del radical DPPH* y FRAP (b). Letras distintas

Muestra	Apariencia general	Pardeamiento	Flavor característico	Gusto ácido	Off- flavors	Off-odors
MP	6,1±0,7 a	4,1±1,0 °	5,1±0,6 b	5,1±0,6 a,b	0,6±0,9 a	0,7±0,9 a
С	6,9±1,1 b	3,2±1,0 b	4,9±0,8 b	4,5±1,0 a	0,4±0,7 a	0,5±0,6 a
Т	9,0±0,4 °	0,3±0,4 a	3,8±0,6 a	5,6±0,8 b	2,9±1,1 b	2,3±0,7 b

Tabla 3. Atributos sensoriales. Letras distintas entre filas indican diferencia significativa (p<0,05).

CONCLUSIONES

El mínimo procesamiento sin TQ disminuyó el contenido de sólidos solubles, el recuento de AMT y el contenido de polifenoles (no así la capacidad antioxidante). No afectó las características sensoriales relativas la sabor, así como astringencia, crujencia y jugosidad, pero sí aumentó la apariencia general y disminuyó el pardeamiento

La aplicación de la solución con 1,2% YM; 0,9% ÁC y 1,0% ÁA produjo un incremento del contenido de sólidos solubles y de los parámetros L* y h_{ab} y un descenso del parámetro a* respecto de C. El TQ mejoró la apariencia de las manzanas y aumentó significativamente su potencial saludable (mayor contenido de polifenoles y mayor capacidad antioxidante).

REFERENCIAS

Benzie, I. & Strain, J. (1996). The ferric reducing

Benzie, I. & Strain, J. (1996). The ferric reducing ability plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. *Analytical Biochemistry*, 239, 70-76. Lim, Y.Y.; Lim. T.T. & Tee. J.J. (2007). Antioxidant properties of several tropical fruits: a comparative study. *Food Chemistry*, 103, 1003-1008. Singleton, V. & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.

AGRADECIMIENTOS

Trabajo realizado con fondos de la Universidad Nacional del Litoral, través de CAI+D 2009 PI Nº103 Programa 18. El Laboratorio Tecnológico del Uruguay financió la estadía de Mariana Rodríguez Arzuaga en Santa Fe. Se agradece a María A. Moguilevsky por la asistencia técnica en este trabajo