

Una herramienta para la Gestión de Calidad de Laboratorios de Ensayos aplicado a los materiales de construcción:

Ensayos Interlaboratorios de Asfaltos

Ing. Jorge Grgich

Departamento Construcciones

Laboratorio Tecnológico del Uruguay

Objetivos de la exposición

ENSAYOS INTERLABORATORIOS:

- Ensayos de Asfaltos.
- Evaluación e interpretación de los resultados.
- Utilidad de los resultados del Ensayo Interlaboratorio.
- Gráficos de control.

ASEGURAMIENTO DE LA CALIDAD

- Es un programa de actividades llevadas a cabo por el laboratorio con la finalidad de verificar que los resultados obtenidos tienen una precisión y exactitud aceptable y mejorar en conjunto el funcionamiento del mismo.
- Estos programas son planificados y revisados periódicamente.

ASEGURAMIENTO DE LA CALIDAD DE LOS RESULTADOS

- Dicho programa debe abarcar todos los ensayos incluidos en el alcance de acreditación del laboratorio.
- La frecuencia de realización de cada uno de estos Programas queda establecida por el laboratorio.
- El laboratorio debe tener procedimientos de control de calidad para monitorear la validez de los ensayos llevados a cabo.

ASEGURAMIENTO DE LA CALIDAD DE LOS RESULTADOS

CONTROLES DE CALIDAD:

Son las actividades que se deben realizar para todos los ensayos acreditados.

- Control de calidad interno:
 Un programa de controles periódicos es necesario para demostrar que se controla la variabilidad con el uso de materiales de referencia o participación en Ensayos Intralaboratorio.
- Control de calidad externo: Participación en Ensayos de Aptitud Interlaboratorio

Control de calidad interno:

El control de calidad interno consiste en todos los procedimientos realizados por un laboratorio para la **evaluación continua** de su trabajo.

El principal objetivo es asegurar la coherencia de los resultados obtenidos diariamente y el cumplimiento de los criterios establecidos.

ENSAYOS INTRALABORATORIO:

Son las verificaciones de calidad para evaluar el desempeño de los analistas del laboratorio en un ensayo.

Métodos cuantitativos:

Se comparan los resultados obtenidos :

- Por cada analista perteneciente al laboratorio que realiza por duplicado el análisis de la muestra. (repetibilidad de cada analista).
- Entre analistas del mismo laboratorio para un ensayo (reproducibilidad entre analistas)

Definición: Repetibilidad

Grado de concordancia entre los resultados de sucesivas mediciones del mismo mesurando realizadas en las mismas condiciones de medición.

Las mismas condiciones significa resultados obtenidos:

- Con el mismo método de ensayo.
- Sobre el mismo material de ensayo.
- Bajo las mismas condiciones (mismo operador, mismos equipos, mismo laboratorio y un corto intervalo de tiempo).

Definición: Reproducibilidad

Grado de concordancia entre los resultados de sucesivas mediciones del mismo mesurando realizadas en diferentes condiciones de medición.

El ensayo se realiza sobre el mismo material de ensayo pero en diferentes condiciones.

- Resultados obtenidos con diferentes métodos de ensayo o equipos (REPRODUCIBILIDAD ENTRE MÉTODOS)
- Resultados obtenidos con diferentes operadores o analistas (REPRODUCIBILIDAD ENTRE ANALISTAS)
- Resultados obtenidos por diferentes laboratorios (REPRODUCIBILIDAD ENTRE LABORATORIOS)
- Resultados obtenidos en diferente tiempo.

ASEGURAMIENTO DE LA CALIDAD DE LOS RESULTADOS

LOS CONTROLES DE CALIDAD INTERNOS NO SON SUFICIENTES

No puedo determinar mediante ellos el Valor verdadero.

Realizo un Control de calidad externo.

Definiciones:

- Valor verdadero: valor en consistencia con la definición de una magnitud (concepto abstracto, no realizable).
- Valor asignado o valor de referencia: es el valor convencionalmente verdadero.
- Exactitud de una medición: Proximidad entre el resultado de una medición y el valor verdadero del mensurando.

Definiciones

- Precisión: "el grado de concordancia entre ensayos independientes obtenidos bajo unas condiciones estipuladas"
- Veracidad: "que los resultados no tengan un error sistemático"
- Exactitud: "la proximidad en la concordancia entre un resultado y el valor de referencia aceptado"

Valor Verdadero:

Cálculo del valor de referencia o valor asignado:

 Se considera que el <u>valor medio obtenido por el</u> <u>conjunto de laboratorios</u> luego de eliminar los outliers o valores discordantes en el propio ejercicio puede utilizarse como valor de referencia o valor verdadero.

Los programas de ensayos de aptitud organizados externamente por un proveedor de ensayos interlaboratorio

CONSTITUYEN UN MEDIO INDEPENDIENTE

por el cual un laboratorio se puede

EVALUAR OBJETIVAMENTE

y demostrar la <u>veracidad y precisión</u> de los resultados obtenidos por sus métodos analíticos.

Ensayos de Aptitud Interlaboratorio ("Proficiency Testing"):

- Constituye una herramienta para la evaluación externa de la calidad de los resultados de ensayo o desempeño del laboratorio.
- La participación en estos ensayos PERMITE AL LABORATORIO COMPARAR SUS RESULTADOS FRENTE A LOS DE OTROS LABORATORIOS.
- Es importante evaluar los resultados obtenidos en los ensayos de aptitud como una manera de comprobar la calidad de los ensayos, adoptando las medidas oportunas, si son necesarias.

Ensayos de Aptitud Interlaboratorio ("Proficiency Testing"):

La organización proveedora de Ensayos de Aptitud Interlaboratorio envía muestras cuyo resultados de ensayos es desconocido por el participante.

El laboratorio participante las analiza y remite los resultados obtenidos al organizador, posteriormente recibe un informe con sus análisis y evaluaciones.

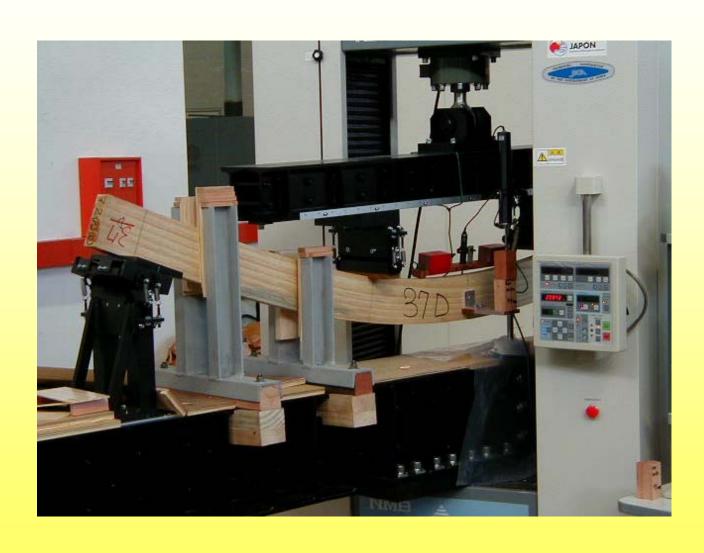
Ensayos de Aptitud Interlaboratorio "Proficiency Testing"

Programas con ASHTO Asfaltos

Desde 1994 participa en Programas de Comparaciones Interlaboratoriales ASHTO Materials Referente Laboratory – AMRL en el cual participan mas de 300 laboratorios.

AMRL Emulsified Asphalt Proficiency Sample Program
AMRL Viscosity Graded Asphalt Cement Proficiency Sample Program
AMRL Bituminous Asphalt Proficiency Sample Program
Estos programas lo utilizan AASHTO y ASTM para establecer criterios de aprobación rechazo en algunas normas.

Programas con la Comisión Nacional de Energía Argentina Hormigón


Ensayos de Aptitud por comparaciones Interlabortorios de Compresión de Probetas Cilíndricas de Hormigón

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

THE PROGRAMS OF THE AASHTO MATERIALS REFERENCE LABORATORY

AMRL Proficiency Sample Program Viscosity Graded Asphalt Cement (203/204) LATU Laboratorio Tecnologico del Uruguay

Montevideo, Uruguay

		Sample 203	Sample 204	
1	ASPHALT TYPE: AC 20 (PG 64-22) Penetration of Original Sample at 25°C: T49/D5 (nearest unit)	55	56	
2	ASPHALT TYPE: AC 20 (PG 64-22) Penetration of Original Sample at 4°C: T49/D5 (nearest unit)			
3	ASPHALT TYPE: AC 20 (PG 64-22) Corrected Flash Point by Cleveland Open Cup: T48/D92 (nearest °C)	335	337	
4	ASPHALT TYPE: AC 20 (PG 64-22) Optional - Barometric Pressure at the Time of the Test: T48/D92 (mm of Hg)			
5	ASPHALT TYPE: AC 20 (PG 64-22) Specific Gravity (Relative Density) at 25/25°C: T228/D70 (nearest 0.0001)	1.0124	1.0133	
6	ASPHALT TYPE: AC 20 (PG 64-22) Kinematic Viscosity at 135°C: T203/D2170 (nearest cSt)	396	394	
7	ASPHALT TYPE: AC 20 (PG 64-22) Viscosity at 60°C: T204/D2171 (nearest poise)	1928	1896	
8	TESTS ON RESIDUE FROM RTFO Change in Mass: T240/D2872 (negative number indicates loss) (nearest 0.001 percent)	-0.030	-0.023	
9	TESTS ON RESIDUE FROM RTFO Penetration of Residue at 25°C: T49/D5 (nearest unit)	34	36	
10	TESTS ON RESIDUE FROM RTFO Viscosity of Residue at 60°C: T204/D2171 (nearest poise)	4774	4466	
11	TESTS ON RESIDUE FROM RTFO Kinematic Viscosity of Residue at 135°C: T203/D2170 (nearest cSt)	568	571	
12	TESTS ON RESIDUE FROM RTFO Penetration of Residue at 4°C: T49/D5 (nearest unit)	100	- 44	

AMRL Viscosity Graded Asphalt Cement Proficiency Sample Program Final Report - May 11, 2006

Summary Table

ASPHALT CEMENT PROFICIENCY SAME	SAMPLE NUMBER 203			SAMPLE NUMBER 204			
TEST RESULT	NO. LABS	AVO.	STAND. DEV.	COEFF.	AVO.	STAND. DEV.	COEFF. VAR.
ASHTO T49/ASTM D6:	160	54.9	42	7.62	54.8	4.4	7.97
(1) Penetration of Original Sample at 25°C	158	54.9	3.3	8.10	54.8	3.3	6.02
ASHTO T49/ASTM D5:) Penetration of Original Sample at 4°C	98	19.4	62	31.9	19.0	5.0	28.6
	92	19.1	3.6	19.0	19.0	3.9	20.4
AASHTO T48/ASTM 092: (3) Flash Point by Cleveland Open Cup (*C)	133	332.1	15.1	4.58	332.0	14.7	4.42
Francisco Carrenano Open Cop (C)	129	333.2	10.2	3.07	333.0	10.2	3.05
ASHTO T228/ASTM 070: 5) Specific Gravity at 25°C	141	1.01587	0.0032	0.318	1.01595	0.0057	0.558
	134	1.01534	0.0017	0.170	1.01528	0.0018	0.176
AASHTO T201(ASTM 02170:	122	302.8	14.8	3.77	304.6	15.9	4.03
(6) Kinematic Viscosity at 135°C (eSt)	115	392.7	10.3	281	393.9	11.5	2.93
AASHTO T202/ASTM 02171: (7) Vincosity at 60°C (poise)	141	1945.8	132.5	6.81	1959.9	138.9	7.09
) Yecosty at CPC (pose)	153	1941.0	59.0	3.04	1948.6	61,4	3.15
AASHTO T240(ASTM D2872: (8) Change in Mass (%)	134	-0.0421	0.082	148.43	-0.0449	0.058	129.74
Criange in Krans (%)	129	-0.0485	0.048	102.57	-0.0457	0.046	100.25
AASHTO T49/ASTM D5: (9) Penetration of Residue at 25°C	130	33.2	3.2	9.69	33.3	3.2	9.62
(c) Personal of Reside 8122 C	123	33.6	25	7.45	33.8	25	7.41
AASHTO T202(ASTM D2171: (10) Viscosity of Residue at 60°C (coise)	119	4600.8	474.4	10.1	4682.3	491.5	10.5
(14) Takking a Managa at the California	115	4690.6	318.8	6.80	4683.6	303.9	6.49
AASHTO T201/ASTM 02170: (11) Knematic Viscosity of Residue at 136°C	102	565.9	30.8	5.54	565.6	28.6	5.15
(cSt)	98	558.9	18.7	3.37	567.1	16.4	294
AASHTO T49/ASTM D5: (12) Penetration of Residue at 4°C	90	13.4	3.6	27.2	13.5	3.4	25.4
(14) FERNISHED REIDER 140	87	13.8	3.1	22.4	13.9	29	20.9

Test de Grubbs y Cochran.

Previamente a la determinación del valor asignado, es necesaria la detección y eliminación de los resultados discrepantes o anómalos (outliers), por medio de diversos criterios.

El test de Cochran se basa en la repetibilidad y elimina los datos de los laboratorios que tienen una varianza intralaboratorio significativamente mayor que la del resto de participantes.

El test de Grubbs (simple o doble) sirve para eliminar los laboratorios que obtienen valores medios extremos y que se alejan de la distribución gaussiana de los valores medios de los participantes.

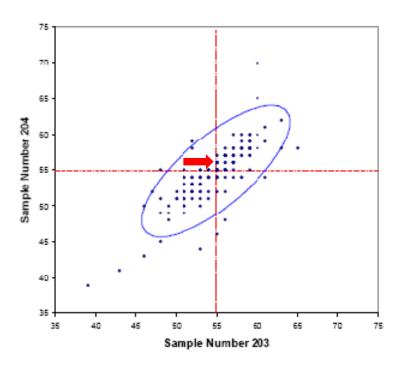
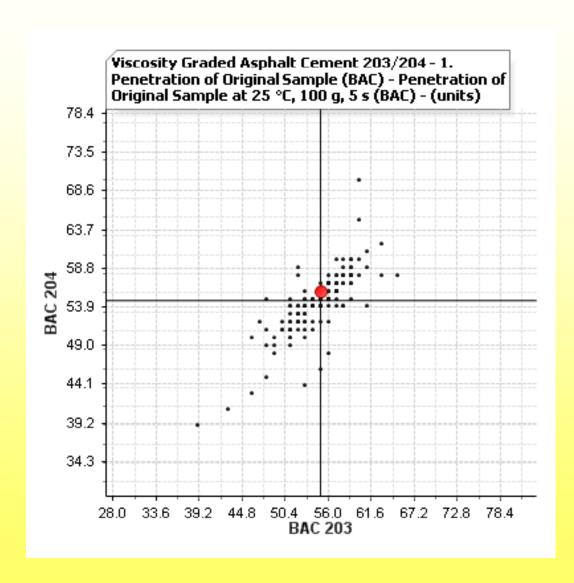


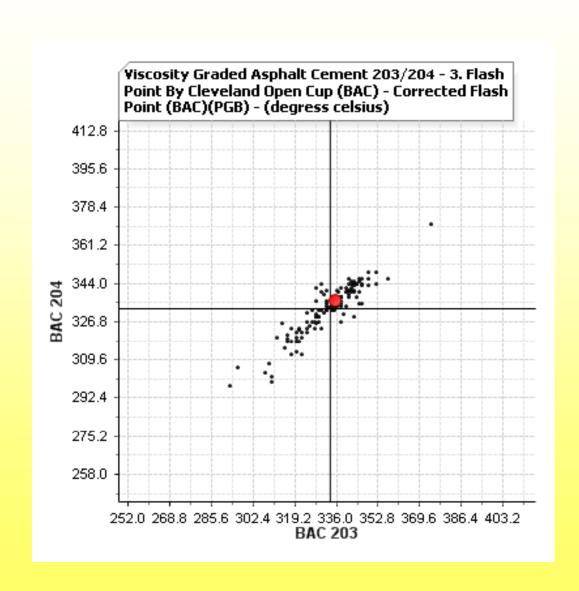
Diagrama de Youden

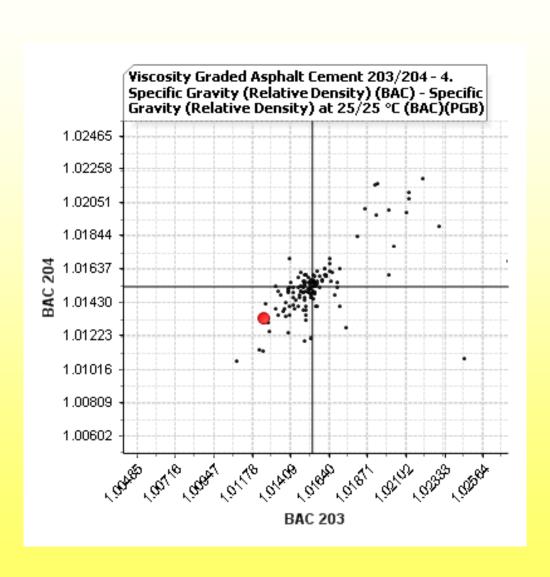
- Una vez eliminados los valores discrepantes o outliers son graficados los pares de valores de resultados de los laboratorios según el gráfico elíptico mostrado, donde quedan fuera del mismo los resultados que difieren de mas de tres desviaciones estándar (en su interior quedan al menos el 95% de resultados de menos tres desviaciones estándar)
- Los resultados sobre el semieje mayor de la elipse poseen solamente errores sistemáticos y los que se hallan en alguno de los cuadrantes poseen una componente sistemática (paralela al semieje mayor) y una componente aleatoria (paralela semieje menor).
- Lo ideal es acercarse lo mas posible o coincidir con el centro de la elipse que representa el valor de referencia o verdadero.
- Tendría veracidad en el caso de coincidir con el centro ya que los resultados no tienen error sistemático y sí precisión, grado de concordancia entre ensayos independientes obtenidos bajo unas condiciones estipuladas, lo cual me da el grado de exactitud máximo.

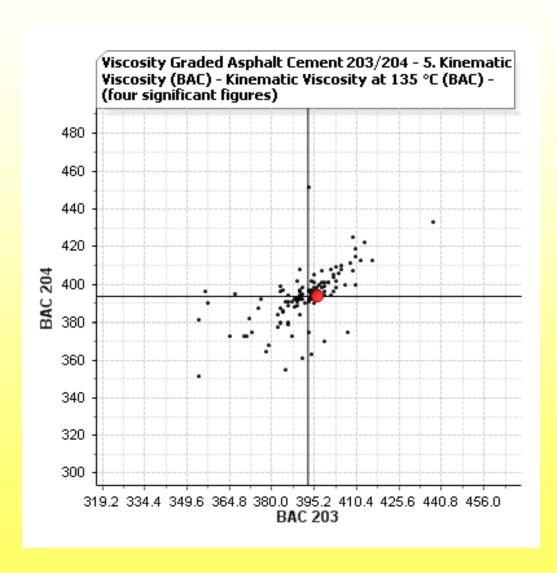
AMRL PROFICIENCY SAMPLE PROGRAM BAC SAMPLE NOS. 203 & 204

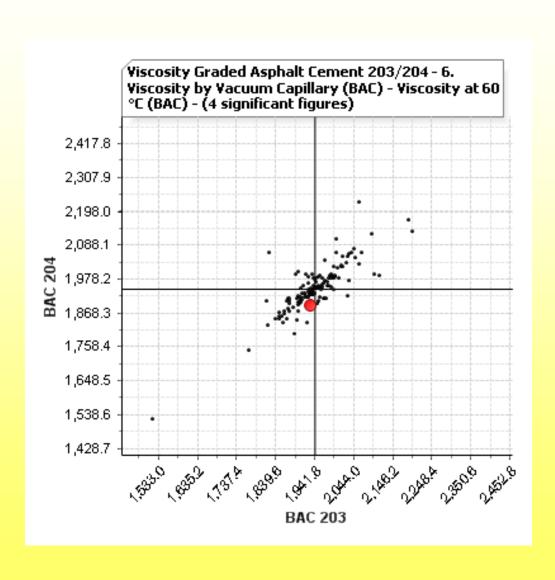
Test No. 1 Penetration of the Original Sample at 25°C

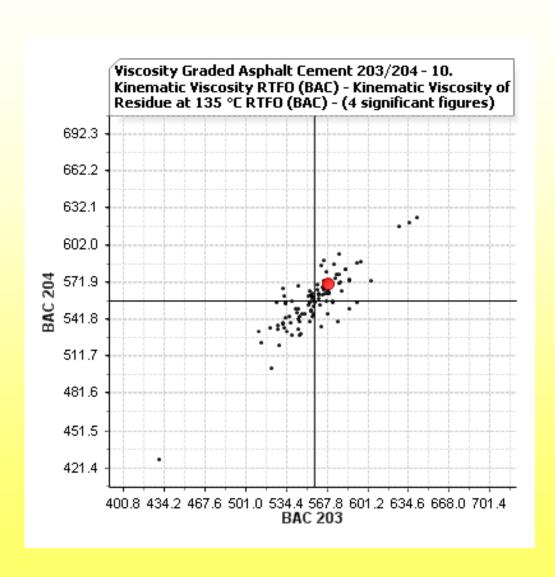

Note: The ellipse contains approximately 00% of all submitted results.

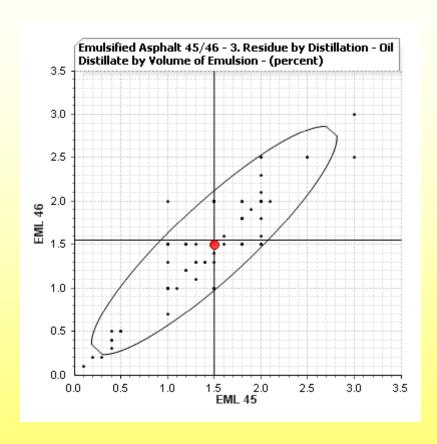

Sample No. 203 AVE 54.91 S.D. 3.3 C.V. 6.10 Sample No. 204 AVE 54.76 S.D. 3.3 C.V. 6.02


Number of points included in the analysis: 156


Number of points elimnated: 4


The diagram shows all data points before the elimination of outliers, but some points may be off of the diagram.





CALCULO DE PUNTUACIÓN Z (Z - score)

Definición de Z

Formula de la evaluación de la competencia ampliamente utilizada.

$$Z = X_{LAB} - X_{REF}$$

X_{LAB} = Resultado del Laboratorio

XREF = Valor de Referencia asignado

S = Unidad de desviación

Si Xref es el promedio y S es la desviación estándar, la puntuación Z representa la distribución estándar normal.

Criterios de calificación

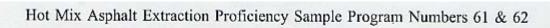
Rating 5	Los datos se encuentran dentro de 1,0 Stand. Dev. a partir de la media
Rating 4	Los datos se encuentran dentro de 1,5 Stand. Dev. a partir de la media
Rating 3	Los datos se encuentran dentro de 2,0 Stand. Dev. a partir de la media
Rating 2	Los datos se encuentran dentro de 2,5 Stand. Dev. a partir de la media
Rating 1	Los datos se encuentran dentro de 3,0 Stand. Dev. a partir de la media
Rating 0	Los datos se encuentran dentro de 3,0 Stand. Dev. o más a partir de la media

Ensayos de Aptitud Interlaboratorio ("Proficiency Testing"):

Viscosity Graded Asphalt Cement Proficiency Sample Program Numbers 193 & 194

Test Title		Lab	Data	Ave	rages	Ratings	
Test		193	194	193	194	193	194
AASH	TO T49 / ASTM D5, Penetration						
(1)	Penetration at 25°C	55	54	56.2	56.4	-5	-5
AASH'	TO T49 / ASTM D5, Pen of Original Sample						
(2)	Penetration of Original Sample @ 4°C	-	-	21.1	20.8	-	-
AASH	TO T48 / ASTM D92, Cleveland Flash Point						
(3)	Flash Point (°C)	339	341	329.7	330.2	5	4
AASH	TO T228 / ASTM D70, Specific Gravity						
(4)	Specific Gravity at 25/25°C	1.004	1.003	1.0058	1.0060	-4	-3
AASIF	TO T201 / ASTM D2170, Kinematic Viscosi	n.					
(5)	Kinematic Viscosity at 135°C (cSt)	467	467	470.3	469.1	-5	-5
AACH	TO T202 / ASTM D2171, Viscosity at 60°C						
(6)	Viscosity at 60°C (poise)	2172	2198	2282.4	2278.2	-4	-5
	TO TO A A A COTT A DOORS D. IV. THE						
	TO T240 / ASTM D2872, Rolling Thin Film	0.055	0.053	-0.0290	-0.0286	2	2
(7) (8)	Change in Mass (%) Penetration at 25°C	36	36	37.0	36.9	-5	2 -5
(9)	Viscosity at 60°C (poise)	6501	6470	5927.3	5964.6	4	4
(10)	Kinematic Viscosity at 135°C (eSt)	688	686	671.0	672.5	5	5
(11)	Penetration at 4°C			16.1	16.1		

Ensayos de
Aptitud
Interlaboratorio
("Proficiency
Testing"):


Emulsified Asphalt Proficiency Sample Program Sample Numbers 43 & 44

September 9, 2005 Test Title Lab Data Averages Ratings Test 43 44 43 Saybolt Viscosity, T59 / D244 (1) Saybolt Furol Viscosity at 25°C (77°F) (s) 17.7 18.7 19.69 19.60 -5 RESIDUE BY DISTILLATION, T59 / D6997 Percent Residue by Distillation (%) 57.5 57.6 57.49 57.56 (3) Percent Oil Distillate (%) 0.0 0.0 0.26 0.25 TESTS ON DISTILLATION RESIDUE Penetration, T49 / D5 (4) Penetration at 25°C 131 127 132.4 132.9 -5 -5 Solubility, T44 / D2042 (5) Solubility (%) 98.931 99.934 RESIDUE BY EVAPORATION, T59 / D6934 Residue by Evaporation - Beaker 1 (%) 57.61 57.67 Residue by Evaporation - Beaker 2 (%) 57.65 57.65 Residue by Evaporation - Beaker 3 (%) 57.67 57.69 Residue by Evaporation - Avgerage (%) 57.66 57.64 TESTS ON EVAPORATION RESIDUE Penetration, T49 / D5 (10) Penetration at 25°C 118.4 118.8 Solubility, T44 / D2042 (11) Solubility (%) 99.037 99.023

Ensayos de Aptitud Interlaboratorio ("Proficiency Testing"):

Bituminous Proficiency Sample Program Sample Numbers 183 & 184

Test Title	La	b Data	Av	Ratings		
	183	184	183	184	183	184
AASHTO T49 / ASTM D5, Penetration						
Penetration at 25°C	45	46	46.72	46.72	-5	-5
Penetration at 4°C	-	-	19.25	19.29		
AASHTO T48 / ASTM D92, Cleveland Flash Point						
Flash Point ("C)	349	346	350.2	350.1	-5	-5
AASHTO T44 / ASTM D2042, Solubility						
Solubility (%)		<u></u> 3	99.950	99.954		
AASHTO T228 / ASTM D70, Specific Gravity						
Specific Gravity at 25/25°C	1.032	1.040	1.0421	1.0429	-2	-5
AASHTO T201 / ASTM D2170, Kinematic Viscosity						
Kinematic Viscosity at 135°C (eSt)	708	706	721.0	726.1	-5	-5
AASHTO T202 / ASTM D2171, Viscosity at 60°C						
Viscosity at 60°C (poise)	5625	5518	5357.9	5500.4	4	5
AASHTO T179 / ASTM D1754, Thin Film Oven						
Change in Mass (%)	-0.054	-0.049	-0.0401	-0.0324	-5	-5
Penetration at 25°C	40	38	37.9	38.3	5	-5
Percent Original Penetration at 25°C (%)	87	83	80.9	81.7	4	5
Viscosity at 60°C (poise)	9925	12875	10269.3	10556.5	-5	3
Viscosity at 60°C Ratio, Visc Res/Visc Orig	1.76	2.33	1.885	1.892	-5	3
Kinematic Viscosity at 135°C (cSt)	906	1098	1005.3	1016.3	-4	5
Kinematic Viscosity Ratio, Visc Res/Visc Orig	1.28	1.55	1.404	1.396	-4	3
Penetration at 4°C			18.1	18.1	-	-
Percent Original Penetration at 4°C (%)	-		87.3	88.0		
AASHTO T240 / ASTM D2872, Rolling Thin Film C)ven					
Change in Mass (%)	-0.052	-0.049	-0.0650	-0.0529	5	5
Penetration at 25°C	36	36	36.5	36.8	-5	-5
Percent Original Penetration at 25°C (%)	79	78	77.6	78.1	5	-5
Viscosity at 60°C (poise)	13273	14675	13265.5	13248.5	5	4
Viscosity at 60°C Ratio, Visc Res/Visc Orig	2.35	2.66	2.453	2.400	-5	4
Kinematic Viscosity at 135°C (cSt)	1157	1216	1183.9	1182.6	-5	5
Kinematic Viscosity Ratio, Visc Res/Visc Orig	1.63	1.72	1.642	1.630	-5	5
Penetration at 4°C		.,	16.1	16.4		
Percent Original Penetration at 4°C (%)			81.2	82.7	-	-

CATU

February 17, 2005

Test Title	La	b Data	Averages		Ratings	
Test	61	62	61	62	61	62
AASHTO T164 / ASTM D2172, Extraction Method			***************************************			
(1) Percent Asphalt (%)	4.54	5.21	4.570	5.123	-5	5
AASHTO T30 / ASTM D5444, Mechanical Analysis						
(2) Total Passing the 12.5 mm Sieve (%)	92.6	92.4	91.94	91.95	4	5
(3) Total Passing the 9.5 mm Sieve (%)	73.7	80.3	73.54	79.90	5	5
(4) Total Passing the 4.75 mm Sieve (%)	52.9	60.7	52.33	60.08	5	5
(5) Total Passing the 2.36 mm Sieve (%)	32.5	33.9	32.77	33.37	-5	5
(6) Total Passing the 1.18 mm Sieve (%)	19.1	19.1	18.85	18.81	5	5
(7) Total Passing the 600 μm Sieve (%)	11.2	11.2	10.93	10.91	5	5
(8) Total Passing the 300 μm Sieve (%)	8.6	8.6	8.30	8.29	5	5
(9) Total Passing the 150 μm Sieve (%)	7.7	7.8	7.49	7.48	5	5
(10) Total Passing the 75 μm Sieve (%)	7.31	7.39	7.050	7.058	5	5
TESTS ON RECOVERED ASPHALT						
AASHTO T170 / ASTM D1856						
AASHTO T49 / ASTM D5, Penetration						
(11) Penetration of Residue at 25°C			44.2	43.9		
AASHTO T201 / ASTM D2170, Kinematic Viscosity						
(12) Kinematic Viscosity at 135°C (cSt)			595.1	594.0		
AASHTO T202 / ASTM D2171, Viscosity at 60°C						
(13) Viscosity at 60°C (poise)			4241.2	4340.9		
AASHTO T315, Dynamic Shear Rheometer						
14) Dynamic Shear Rheometer G*/SINδ (kPa)			1.215	1.241		
TESTS ON RECOVERED ASPHALT						
ASTM D5404						
AASHTO T49 / ASTM D5, Penetration						
(15) Penetration of Residue at 25°C	22	2.4	20.6	41.6		**
	33	34	38.6	41.6		
AASHTO T201 / ASTM D2170, Kinematic Viscosity	701	714	c=0.4	CTO C	**	
16) Kinematic Viscosity at 135°C (cSt)	721	714	678.4	673.6	**	**
AASHTO T202 / ASTM D2171, Viscosity at 60°C						
(17) Viscosity at 60°C (poise)	7481	7213	5838.9	5612.4	**	**
AASHTO T315, Dynamic Shear Rheometer						
[18] Dynamic Shear Rheometer G*/SINδ (kPa)			1.354	1.412	**	**

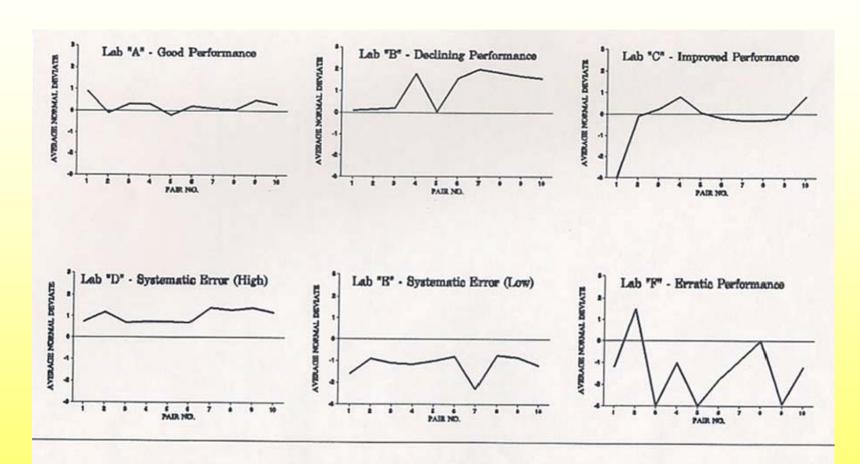
Ensayos de Aptitud Interlaboratorio ("Proficiency Testing"):

Cuando los resultados de los ensayos NO resultan dentro del intervalo de conformidad o se visualice una tendencia determinada

tomar respectivamente acciones correctivas o preventivas, siguiendo los lineamientos establecidos por el Laboratorio

IMPORTANTE!!!

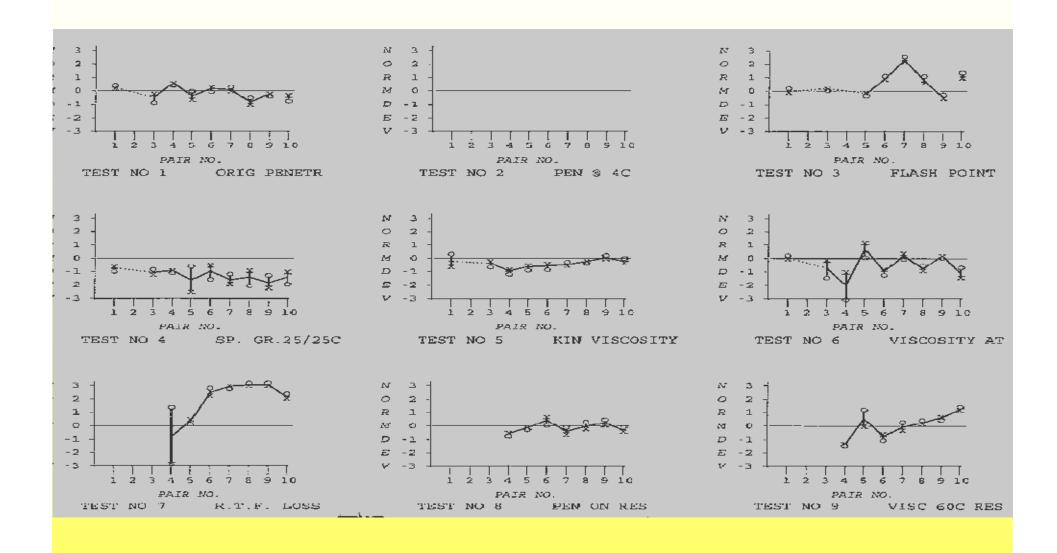
Los datos obtenidos a través del programa del aseguramiento de la calidad deben ser registrados en forma tal que se puedan detectar las **tendencias** y aplicar técnicas estadísticas para la revisión de los resultados.



Evaluación de las tendencias de los resultados obtenidos:

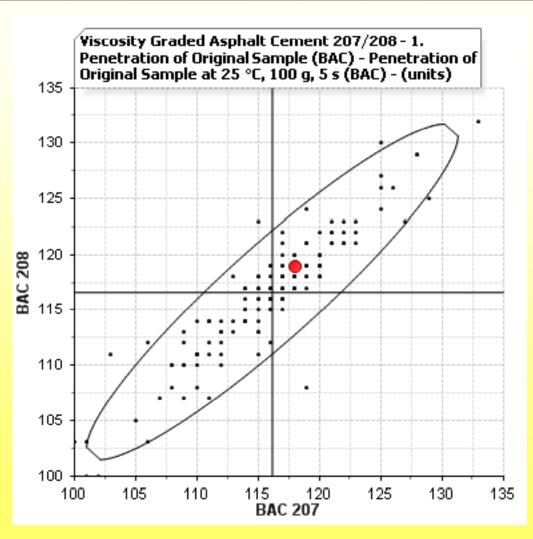
Los **gráficos de control** son una herramienta de trabajo para el control estadístico de los resultados de ensayo y sirven para monitorearlos.

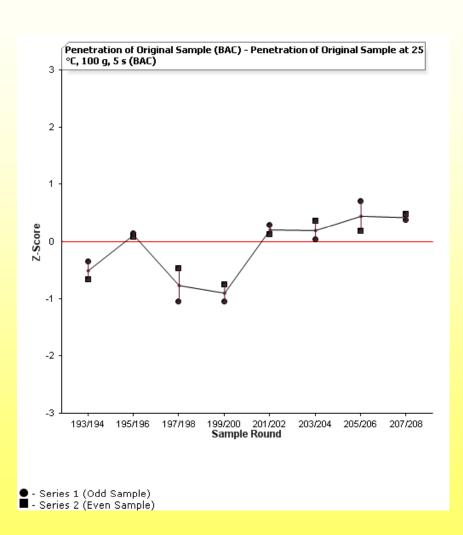
Ejemplo: Ensayo de Interlaboratorio



SOIL PROFICIENCY SAMPLE PROGRAM - LIQUID LIMIT TEST PERFORMANCE OF 6 LABORATORIES OVER A 5 YEAR PERIOD (6 MONTH TEST INTERVAL)

Ejemplo: Ensayo de Interlaboratorio AMRL Proficiency Sample Progran Sample Nos 175 / 176 - 193 / 194




Penetration of Original Sample (BAC)

Penetration of Original Sample at 25 °C, 100 g, 5 s (BAC) (units) View Youden Diagram | View Performance Chart

		Sample 207					Sample 208				
	Total Labs	Lab Data	Avg	18	Z-Score	Rating	Lab Data	Avg	18	Z-Score	Rating
1	156	118	116.1	5.0	0.38	5	119	116.6	4.9	0.48	5

Z - score

Análisis de resultados

- El analizar un resultado con un rating inferior a tres permite al laboratorio descubrir fallas en algunos equipos de ensayo, por ejemplo: falla en ventiladores de hornos de envejecimiento, calidad del agua destilada, equipos calibrados con certificado vigente al que se detectan errores por fallas mecánicas (Ej. balanzas, equipos de vacío, etc.).
- El análisis de estos gráficos permite ver si hay errores sistemáticos y analizar junto al analista la causa posible del mismo, efectuar los registros correspondientes y tomar las medidas correctivas y/o preventivas para verificar si en el próximo interlaboratorio hemos mejorado con las medidas adoptadas y así poder obtener evidencia de la eficacia de la acción tomada.

Síntesis Final

El laboratorio debe llevar acabo periódicamente controles de calidad internos y externos con la finalidad de verificar que sus resultados tienen una precisión y veracidad aceptables y mejorar en conjunto el funcionamiento del mismo.

Síntesis Final

Las normas incluyen criterios de aceptabilidad para los resultados de los ensayos y los gráficos de control permiten monitorear el proceso del mismo. Los límites de variación de los resultados permiten calcular la incertidumbre para cada ensayo.

Síntesis Final

El monitoreo de los ensayos interlaboratorios permite ver cuan alejado estamos del valor verdadero o de referencia y poder así visualizar la exactitud.

Referencias

- AASHTO Materials Reference Laboratory
 The Programs of the AMRL June 1994
- Reportes de resultados del AMRL del Laboratorio de Asfaltos del LATU (1994 – 2007)
- Documento de Calidad LATU PRD.GAC.029
 Procedimiento de Control de Calidad de Ensayos
- Documento de Calidad LATU PRD.GAC051
 Guía para la realización de Gráficos de Control de variables.
- AMRL Home http://www.amrl.net

