Capítulo 13 - Estúdio comparativo de taninos de tara, mimosa y pino como recurtientes

Ricardo Hourdebaigt¹, Juan Iade², Carmine Le Rose³, Daniel Damonte⁴

LATU, Av. Italia, 6201 Montevideo, Uruguay - ¹e-mail: rhourde@latu.org.uy, ²e-mail: jiade@latu.org.uy, ³e-mail: clerose@latu.org.uy, ⁴e-mail: cdamonte@adinet.com.uy

Resumen

Los taninos vegetales son productos naturales que tienen la capacidad de formar complejos con proteínas. Dentro de este contexto, son los productos naturales más importantes usados industrialmente en los procesos que transforman las pieles en cueros.

En este proyecto caracterizaremos los taninos utilizados (evaluación de su poder curtiente) y partiendo de una formulación base en función del artículo final elegido (capellada de calzado), se realiza el curtido e iremos variando el curtiente vegetal y evaluando su comportamiento con distintos ensayos.

Los taninos evaluados son mimosa, pino radiata y polvo de tara.

También presentamos una caracterización de los cueros, mostrando los ensayos a realizar a los diferentes tipos de cuero en función de su uso, las normas que aplican para los análisis y especificaciones que nos orienten para los mismos.

Estas especificaciones indican las propiedades que el cuero debe cumplir para que el mismo tenga un comportamiento adecuado durante su fabricación y uso.

Palabras claves: taninos, polifenoles, curtido, recurtido, norma, capellada, forro, suela

1 Introducción

Los taninos vegetales son productos naturales de peso molecular relativamente alto que tienen la capacidad de formar complejos con los carbohidratos y proteínas. Dentro de este contexto, son de los productos naturales más importantes usados industrialmente, específicamente en los procesos que transforman las pieles en cueros.

Dentro de los artículos fabricados por curtido o recurtido vegetal se pueden citar suela, capellada, plantilla y forro para calzado, cueros para tapicería, para marroquinería entre otros.

Los taninos vegetales se clasifican en dos grupos importantes: los taninos hidrolizables y los condensados.

En virtud de esta importancia es que evaluaremos estas nuevas fuentes de taninos como curtientes y recurtientes.

2 Características de los taninos

2.1 Extractos curtientes comerciales

Entre los extractos curtientes comerciales encontramos:

- a) extracto de mimosa, fácilmente soluble en agua, da cueros flexibles de color beige amarillento.
- b) extracto de quebracho natural, da cueros firmes, solubles en frío por bisulfitación da cueros más flexibles y suaves.
- c) extracto de castaño, de astringencia elevada, da cueros firmes de color avellana; Este extracto es el más sólido a la luz.
- d) extracto de castaño, de astringencia elevada, da cueros firmes de color avellana. Este extracto es el más sólido a la luz.
- e) de yalomea, de gran astringencia da cueros de color amarillento bastante impermeables.
- f) de zumaque, es un extracto suave que penetra rápidamente en la piel, da cuero de tacto suave y flexible y de color muy claro.
- g) extracto de pino, de gran astringencia, da al cuero un color rojizo.
- h) extractos de lignina, en el tratamiento de maderas con sulfitos y bisulfitos para la obtención de la pasta del papel se logran grandes cantidades de compuestos lignosulfónicos solubles que luego son purificadas con tratamientos químicos y desecadas por atomización. Los ácidos lignosulfónicos se fijan bien sobre el colágeno pero no tienen propiedades curtientes, se aplican como auxiliares retardando la fijación del tanino, facilitando la dispersión de los sedimentos y mejorando su difusión en los taninos.

2.1.1 Curtientes hidrolizables y condensados

Los taninos no son idénticos en todos los vegetales, ellos difieren en cuanto a su composición y a sus propiedades químicas especiales según el género botánico donde se encuentren. Son compuestos fenólicos, es decir que su principal función química está representada por el oxidrilo o hidroxilo OH unido a un núcleo bencénico y que poseen un carácter ácido débil. Los taninos están constituidos por grandes moléculas cuyas soluciones acuosas son coloidales y tendrán tendencia a enturbiarse (flocular) y dar precipitados. La clasificación más acertada es la que la propuesta por Freudenberg en 1920 y que considera dos grupos:

2.1.1.1 Taninos hidrolizables

Los extractos tánicos hidrolizables o pirogálicos son aquellos que por hidrólisis en medio ácido y a ebullición forman productos solubles en agua.

Su constitución está caracterizada por el hecho de que el núcleo bencénico está unido al segundo compuesto por intermedio de átomos de oxígeno. Depositan, habitualmente,

ácido elágico (compuesto amarillento, cristalizado y poco soluble en agua) finamente dividido que forma borra en el fondo de las cubas y eflorescencias en el cuero. Con sales de hierro dan coloración negro-azulada. Los extractos tánicos hidrolizables se pueden clasificar en dos grandes grupos:

- a) Aquellos que forman ácido gálico y glucosa a través de hidrólisis, llamados extractos gálicos
- b) Aquellos otros que dan ácido elágico y glucosa llamados extractos elágicos.

2.1.1.2 Taninos condensados

Los extractos condensados o catequínicos que en las mismas condiciones forman precipitados. Sus núcleos constituyentes están reunidos entre sí con intervención de átomos de carbono. Se los llama catequínicos porque sometidos a destilación seca, casi todos, dan pirocatequína.

2.2 Caracterización de cueros y sus normas

A continuación se detallan los ensayos a realizar a los diferentes tipos de cuero en función de su uso, las normas que aplican para los análisis y especificaciones para los mismos en nuestro caso vinculado al calzado. Estos valores son una recopilación de distintos organismos y empresas más importantes del ramo, siendo en última instancia una relación comercial que estima los estándares de calidad de las materias primas para la industria del calzado, prendas y tapicería.

El organismo que regula las normas de cueros es la IULTCS (Unión Internacional de Sociedades de Técnicos del Cuero) entidad internacional que esta formada por todas las asociaciones que corresponden a los diferentes países socios.

La denominación con la sigla IUP se refiere a ensayos físicos, las que lleva la sigla IUC a ensayos químicos y las IUF a solídeces.

Se realizo un recurtido con destino a capellada de calzado, hasta el estado semiterminado, (comúnmente llamado crust, cuero curtido, recurtido, engrasado teñido o no y acondicionado para el acabado).

Adjuntamos normas y especificaciones a los cueros que se utilizaran para suela, capellada y forro.

Estas especificaciones son a titulo orientativo sobre los estándares de calidad exigidos en este caso para suela, capellada y forro.

 Tabla 1
 Cueros para suela

Ensayo	Norma	Especificación
Absorción de agua	IUP 7 – DIN 53330	Max. Abs. de agua 2 horas = 35% Max. Abs. de agua 24 horas = 45%
Permeabilidad al vapor de agua	IUP 15 – DIN 53333	Mín 200 mg/cm ² h
Espesor	IUP 4	2,5 – 5,0 mm
рН	IUC 11	Mín 3
Tiempo de penetración de agua en condiciones dinámicas	IUP 11	Tiempo mín 30 minutos Máx. Absorción a 30 min. 30 %
Materias totales solubles en agua	IUC 6	Max. Base seca 20 %
Cenizas sulfatadas solubles en agua	IUC 6	Cenizas solubles max 3 %

 Tabla 2
 Cueros para forro

Ensayo	Norma	Especificación	
Solidez al frote	IUF 450 (número de ciclos)	Cuero seco, fieltro seco 100 Cuero seco fieltro húmedo 50 Cuero húmedo 50 fieltro mín 4 (escala grises)	
Solidez al agua	IUF 421	Mín 3	
Solidez a la transpiración	IUF 426	Mín 3	
Resistencia a la tracción al alargamiento	IUP 6	Mín de distensión a la rotura del cuero 30%	
Cenizas sulfatadas solubles en agua	IUC 6	Max 1,5 %	
Permeabilidad al vapor de agua	IUP 15	Mín 250 mg/cm ² h	
Mat. Ext. en cloruro de metileno	IUC 4	10 % Mín 250 mg/cm²h	
pH	IUC 11	Mín 3,5	
Solidez a la migración	IUF 442	Mín 3	
Resistencia al calor	IUP 18	Rotura de la flor (lastometro) superior al 70% del valor original	

 Tabla 3
 Cuero para capellada

Ensayo	Norma	Especificación		
Resistencia a la flexión	IUP 39, IUP 20	Cuero acabado: seco 50000 ciclos húmedo 20000 ciclos		ciclos
Tracción y alargamiento	IUP 6	Carga (N/mm ²) 15 Alargamiento 35%		
Resistencia al desgarro	IUP 8	Calzado con forro		
Adhasián a la tampinacián			seco	húmedo
Adhesión a la terminación	IUF 470	Plena flor	3	2
(N/10 mm)		Flor corregida	5	3
Espesor	IUP 4	1,4 a 1,6 mm		
Comportamiento frente a la temperatura	IUF 458	80°C		
Solidez del acabado a la luz	IUF 401 y IUF 402	Ensayo opcional		
Distensión rotura de flor (lastometro)	IUP 9	Mín 7 mm		
Solidez de la terminación frente a frotes	IUF 450, DIN 53339	Cuero seco, fieltro seco 50 ciclos cuero seco, fieltro húmedo 50 ciclos		
Solidez a la gota de agua	IUF 420	pasa		
Permeabilidad al vapor de agua	IUP 15	Mín 200 - 250 mg/cm2/h		n2/h
Impermeabilidad al agua	IUP 10	Tiempo de penetración 120 minutos		
Materias extraíbles en cloruro de metileno	IUC 4	Hasta 9 % para aplicar adhesivo 1 componente, hasta 14% adhesivo especial de poliuretano, hasta 7% se puede vulcanizar, hasta 15% se puede aplicar el procedimiento de inyección de PVC. Estos valores dependen de la distribución de la grasa en el espesor del cuero y de la clase de grasa		nesivo ta 7% se % se ento de la el espesor

En el caso de cuero para capellada, se debería agregar una serie de ensayos opcionales: Solidez a agentes de limpieza (IUF 430), capacidad de almacenamiento (EWG-F1), materias minerales extraíbles (IUC6), etc.

2.3 Proceso de Curtido

Una breve descripción del proceso de curtido se detalla en la figura 1, para el curtido al cromo con la opción de un recurtido cromo o vegetal.

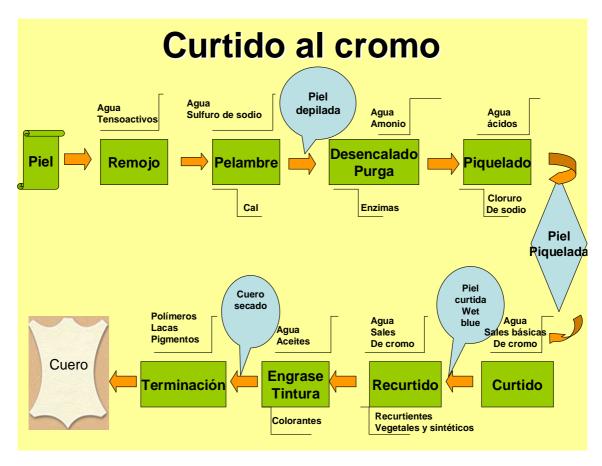


Figura 1 Diagrama de flujo del proceso de curtido

Este curtido es una formulación convencional, indicándose los tipos de productos a agregar en cada etapa, en nuestro caso haremos un recurtido vegetal con los taninos en estudio.

Para esto trabajaremos en cuero bovino wet blue con un área de 47 p2 (4,4 m2). Sobre el cuero bovino al estado wet blue se dividió y se trabajó en octavos (ver Figura 2).

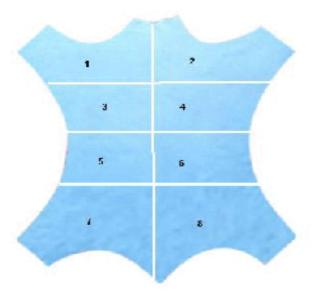


Figura 2 Cuero bovino wet blue

Se analizó, dicho cuero tipificándolo:

Cromo como Cr ₂ O ₃ en base seca	Cenizas en base seca	Materias extraíbles con diclorometano (en base seca)		рН
4,1 %	5,7 %	3,1 %	pH = 3.3	Ind. Dif. = 0.6

Por otro lado se recibieron tres taninos vegetales, Tara, Mimosa y Pino Radiata.

2.4 Caracterización del los taninos en estudio

2.4.1 Producto 1: Polvo de Tara, certificado de análisis M 002/2007

Origen: Transformadora Agrícola SAC (Perú)

Nº Batch 07033

pH = 3.7

Curtientes (%)	No Curtientes (%)	Cenizas (%)
55,2	14,9	3,1

2.4.2 Producto 2: Extracto de Pino Radiata, certificado de análisis M 002/2007

Origen: Universidad de Concepción (Chile)

Nº Batch 07033,

pH = 3.7

	No Curtientes (%)	Cenizas (%)
Curtientes (%)		
32	53	1,2

2.4.3 Producto 3. Extracto de Mimosa sulfitado

Origen: Tanac (Brasil)

pH = 4.0 - 4.5

	No Curtientes (%)	Cenizas (%)
Curtientes (%)		
59	37	3,6

2.5 Formulación general para el Recurtido

Wet blue 1,3-1,5 mm de espesor

Lavado 0,50 % no iónico

0,50 Ac. Oxálico

Neutralización 2,50% Formiato de sodio

Recurtido 10,0 % Tanino

1,50 % Ac. Formico

Engrase 9 % aceite

Fijación 2,0 % Ac. Formico

0,5 % Secuestrante de hierro

2.6 Ensayos

Se realizaron varios ensayos comparativos evaluatorios:

Ensayo	Muestra		
	Tara	Pino Radiata	Mimosa
Resistencia a la tracción (N/mm ²)	14,9	13,5	11,8
Resistencia al desgarre (N)	53,2	60,5	51,0
Distensión de la rotura de la flor (Lastometro)	11,8	9,2	11,0
Flexión seco (100000 ciclos)	Sin alteraciones	Sin alteraciones	Sin alteraciones
Flexión húmeda (50000 ciclos)	quiebres	quiebres	quiebres
Envejecimiento 168 horas a 100 °C Evaluación según ISO 105 A02E (escala de grises)	2 - 3	2	2
Solidez a la luz 20 horas	4	2 - 3	2
Solidez a la luz - 80 horas	3 - 4	2 - 3	2
Materias extraíbles con diclorometano (% expresado en base seca)	7,2	7,3	7,1
Estabilidad a la humedad -24 horas a 40°C - 95 % humedad relativa	Sin cambio de color	Sin cambio de color	Sin cambio de color

A efectos de evaluar el comportamiento de los taninos en presencia de anilina negra se realizo un recurtido comparativo usando 2% de la misma anilina negra (Carbón Derma BFS). El ensayo se comparo frente a un recurtido cromo. La cantidad de anilina agregada fue deliberadamente poca para mostrar mayor diferencia de intensidades.

El resultado de la medida del color fue:

Sistema de color, Método Cie-Lab 1976

	Standard blanco	Cromo	Mimosa	Tara	Pino
L (negro – blanco)	93,1	34,2	37,9	41,6	38,9
A (rojo – verde)	-1,1	-3,0	-1,4	-2,7	0,0
B (azul-amarillo)	1,3	-0,7	-2,4	-3,4	1,9

2.7 Discusión de resultados

La tara fue de los taninos en estudio, quién mostró una mejor solidez a la luz. De los ensayos físicos realizados, el desgarre fue él que diferencio a los recurtientes evaluados con una diferencia considerable del Pino.La tracción mostró diferencias siendo la tara la que mostró menores valores.

Con respecto a la intensidad del color negro pudimos comprobar que el cuero recurtido con cromo fue el más intenso, mientras que la mimosa y el pino tuvieron un comportamiento semejante y el que mostró la menor intensidad fue la tara.

3 Conclusiones

Pudimos comprobar que todos los cueros recurtidos (con tara, mimosa y pino radiata) en el estudio partiendo de wet blue para confección de capelladas, cumplían con las especificaciones preestablecidas (salvo los referidos a la tracción) en los ensayos evaluados.

Todos los estudios fueron realizados a escala de laboratorio, lo que justificaría continuar con las evaluaciones, repitiendo los diferentes procesos.

4 Referencias

Adzet Adzet JM, y otros, (1985), Química Técnica de Tenería.

Zhiwen, Dr. Ding (2007), *Technology of Leather Manufacture*, China Leather & Footwear Industry Research Institute

The IULTCS official methods of analysis, http://www.iultcs.org/iultcs_methods.asp.

Lic Víctor D. Vera, publicaciones Centro de Investigación de Tecnología del Cuero (CITEC), Argentina.

Society of Leather Technologists and Chemists (SLTC), *Official Methods of Analysis*, United Kingdom.

Heidemann, E. (1993) Fundamentals of Leather Manufacturing.

ASTM, International, American Society for testing and Materials.

Pauckener, W. Escuela Alemana de Tenería, Reutlingen, Mecanipel Nº 191.

Pocket Book for the Leather Technologist, Fourth edition, BASF.

cueronet.com, http://www.cueronet.com/.

5 Agradecimientos

- Pedro Paz, Daxilan s.a.
- Ignacio Pérez, American Chemical ICSA
- Alejandro Morales, Química Oriental s.a.
- Eduardo Schmidt, Vilmax