

TECHNOLOGICAL LABORATORY OF URUGUAY

Cea J.; Moriyama Ch.; Martínez O.; Martínez A.; Simoens M. Natural Toxins Department. Technological Laboratory of Uruguay. Ave.Italia 6201, CP 11500, Montevideo, Uruguay. Telefax 598-2-6018554. <u>jcea@latu.org.uy</u>, cmoriya@latu.org.uy, omarti@latu.org.uy, amarti@latu.org.uy, msimoens@latu.org.uy.

ABSTRACT

RESULTS

Calibration Curve rice maize feed	Aflatoxin B1, B2, G1 and G2: 0,5 to 10 μg/kg for each one Zearalenone: 60 to 500 μg/kg Ochratoxin A: 1,3 to 25 μg/kg						
Detection limit and Quantitation limit rice maize feed	Aflatoxins: 0,7 μg/kg for each aflatoxin Zearalenone: 60 μg/kg Ochratoxin A: 2 μg/kg						
Recovery perceptage	Matrix Toxin	AFB1	AFB2	AFG1	AFG2	ZEA	ΟΤΑ
N= Number of samples R= Mean of % recovery	Rice	N=118 R=89	N=113 R=88	N=111 R=90	N=115 R=85	N=88 R=96	N=98 R=84
	Maize	N=31 R=73	N=25 R=71	N=29 R=70	N=28 R=69	N=39 R=83	N=10 R=63
	Feed	N=22 R=76	N=19 R=74	N=18 R=74	N=16 R=73	N=14 R=78	N=13 R=63
Repeatability	RSD exp <rsd horwitz<="" td=""></rsd>						
Accuracy	Z score <i2i< td=""></i2i<>						

EXPERIMENTAL

CONCLUSIONS

This analytical method has demostrated to be a low-cost, robust, easy to perform method that needs trained personnel in visual detection. The effectiveness as a quantitative method was demostrated and the accreditation by UKAS following the ISO 17025 obtained since 1998. This method is possible to be implemented in developing countries because equipment is really economically feasible. Analitycal results obtained should be the beginning for the stablishment of national regulatory guidelines.