

Study of the Conductivity of the **Uruguayan Honey**

CALAS E. Santos 1, E. García da Rosa², L. Sánchez³, J. Ferreira⁴, J. González⁵, C. González⁶, Y. Mancebo⁶. CALAS - LATU - DINAPYME project 2006. 2 - MELIKA S.A. - LATU - DINAPYME project 2006. 3 - MELIKA S.A.. 4 - CALAS.. 5- DINAPYME . 6 - LATU - Technological Laboratory of Uruguay

esantos@fcien.edu.uy

Introduction: Our beekeeping is increasingly developing. More than ninety per cent of the production is sold for export. Nearly 10000 tons of honey, which account for an income of 18 millions US dollars, were sold in 2006. Two beekeepers companies, CALAS and MELIKA S.A in conjunction with LATU and DINAPYME worked together in the research of the best cost-effective and competitive price of honey for the commodities market. Moreover, it is known that honey with higher levels of conductivity is better paid in the international market. The aim of this work was to investigate the honey produced by these beekeepers companies and to know the relationship between the botanical origin and the conductivity.

Methodology: 23 honey samples were sent to LATU from November 2006 to May 2007. Samples came as honey-comb-frame. They were extracted by press and filtered through a synthetic cloth, 1 mm opening size. Analysis performed at LATU Laboratorio Tecnológico del Uruguay: Moisture – by AOAC Official Methods of Analysis (2005) Method 969.38 Table 969.38, Determination of electrical conductivity Harmonized Methods of International Honey Comisión (2002), Melissopalinology analysis (J. Loveaux, A Maurizio, and G. Vorwhol 1970).

Results:

0	Conductivit	Colour	Colour name	Botanical
Sample number	y (µSm/cm)	(mmPfun		origen
		d)		
1	223	13	Extra White	
2	184	21		Lotus spp
3	223	28		Lotus spp
4	324	31	White	Lotus spp
5	257	35	Extra Light Amber	Brassica spp
6	323	36	Extra Light Amber	Lotus spp
7	439	41	Extra Light Amber	Citrus spp
8	321	46	Extra Light Amber	Lotus spp
9	305	49	Extra Light Amber	Lotus spp
10	309	50	Extra Light Amber	Lotus spp
11	384	53	Light Amber	Lotus_spp
12	477	54	Light Amber	Lotus spp
13	512	55	Light Amber	Lotus spp
			Light Amber	Baccharis
14	583	60		spp
15	314	62	Light Amber	Brassica spp
16	736	68	Light Amber	Unknow
17	764	68	Light Amber	Lotus spp (*)
18	867	76	Light Amber	Natural bush
19	697	79	Light Amber	Polyflora
20	818	79	Light Amber	Honeydew
				Eucalyptus
21	889	79	Light Amber	spp
				Eucaliyptus
22	814	80	Light Amber	
23	805	89	Amber	Lotus spp (**)

(*) = Secondary Pollen: Eucalyptus spp

(**)=Secondary Pollen Eryngium sp., Blepharocalyx salicifolius

DISCUSSION

The results showed that samples were mainly monoflora-honey. The darker the honey the more electrical conductivity. There seems to be a direct correlation between conductivity and colour at levels higher than 400 microS/cm. The highest electrical conductivities come from uruguayan-natural-bush-honey, eucalyptus-forest-honey and honeydew. Our native bush honey is unique in the world, with a typically strong flavour; high levels of conductivity and provides a good source of minerals. It is feasible for these beekeepers companies, CALAS and MELIKA S.A. to find a better niche market for this type of honey, taking into account the strong need for healthy food worldwide. It will be necessary to encourage these beekeepers to obtain this type of honey by placing the hives near the native bush and eucalyptus forest. Native uruguayan bush honey offers a challenge for young researches to promote our honey. Honeydew honey is rare in Uruguay and it could be an interesting area for further research.

Authors' Acknowledgements: We would like to express our gratitude to M. Borthagaray, J. Silveira, R. Montañez., N. Guidobono, G. Rodriguez, Stella Cristobal

Bibliography:

-Bogdanov S and Martin P, (2002), "Honey Autenticity: A review", Swisss Bee research Centre, 20 pp.

-Bogdanov S., Lüllmann C, Martin P, Ohe W, Russmann H, Vorwoh G, Oddo P L, Sabatini A, Marcazzan G L, Piro R, Flamini C, Morlot M, Lhééritier J, Borneck R, Marioleas P, Tsigouri A, Kerkvliet J, Ortiz A, Ivanov T, D"Arcy B, Mossel B, Vit P(1999), "Honey quality, methods of analysis and international regulatory standards: review of thework of the Intenational Honey commission". Mitt Lebensm. Hyg. 90, 108-125. -Bogdanov S., "Harmonised methods of the International Honey Commission", Sswiss Bee research Centre, 64 pp -Louveaux J., Mauricio A. and Vorwohl G.,(1970), "Methods of Melissopalynology", Bee World 51(3):125-138.

-Von Der Che W., Persano Oddo L., Piana M. L., Morlot M., Martin P., (2004), "Harmonized methods of Melissopalynology", Apidologie 35 S18-S25. -Marchini L. C., Sodre G. S., Camargo A. C., Pozar I., (2004), "Composicao físico-química de amostras de meis de *Apis mellifera* L. Do Estado de Trocantis, Brasil", B. Indust. Anim., 61(2): 101-114.